

Ugobe Confidential
Not for external distribution or publication!

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 2 of 20

Table of Contents .. 2
PAWN Scripting in Life OS v1.x ... 3

Overview ... 3
Audience ... 3
Objective ... 3
Pleo Developers Kit (PDK) .. 3
Support .. 3

Background ... 4
Life OS Applications .. 5

Sounds .. 5
Motions .. 5
Commands .. 5
Scripts ... 5
Build Tools .. 5

PAWN Virtual Machines (VMs) ... 6
Sensor VM .. 6
Main VM .. 6
Behavior VM .. 6
User VM .. 7
Life OS PAWN native interface ... 7

Pleo Application Example ... 8
Overview ... 8
Prerequisites ... 8
Preparation .. 8
Code Changes .. 12
Project File Changes ... 14
Building ... 17
Pleo 1.0 Support ... 19

Document Revision History ... 20

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 3 of 20

Welcome to the community of developers taking UGOBE Life Forms™ to the next

steps…literally. This document is the beginning of how you can expect UGOBE™ to work
with you through documentation, Q&A, Forums chat, and a full-fledged Development Kit in
2008.

What is PAWN? PAWN is a simple, typeless, 32-bit extension language with a C-like syntax.
If you know C, you know PAWN! PAWN was designed for execution speed, stability,

simplicity, and a small footprint. The PAWN language has been built into the Pleo™ firmware
to allow arbitrary code execution, accessing the functionality of the Pleo firmware. See
http://www.compuphase.com/PAWN/PAWN.htm or http://code.google.com/p/PAWNscript/ for
more details on PAWN.

This document is intended for experienced PAWN programmers and experienced C
programmers who would like to learn about PAWN. It is not intended for people with
no programming experience.

Programmers should be able to use this document to gain a general understanding of
the process by which applications are written for Pleo.

UGOBE plans to release a full PDK later this year that will provide tools to assist in
creating applications for Pleo. Please join the Pleo Updates mailing list at
www.pleoworld.com to keep informed about our plans.

Technical questions? Please join the Pleo Community Forum and participate in the
technical thread UGOBE Tech Talk. Visit www.pleoworld.com to join!

http://www.compuphase.com/pawn/pawn.htm
http://code.google.com/p/pawnscript/
http://www.pleoworld.com/
http://www.pleoworld.com/

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 4 of 20

The graphic below shows the constituent parts of the Pleo (Life OS) software. Please note
that the initial PDK release may not give access to all of these pieces. Our initial focus will be
on the sound, motion, command, sensor, and property systems, along with the basic
operating system routines. Other higher-level components will be exposed and documented
in future releases.

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 5 of 20

A Life OS application is a collection of a number of different resources. These resources
include sounds, motions, commands, scripts, and properties.

The build tools use the built-in Python audioop module to process incoming WAV files
into raw PCM or ADPCM formatted USF files (UGOBE Sound File [USF] format.). The
Sound System can currently play 11k, 8-bit mono sound data.

Motions are resources that contain data on how and when to move joints in Pleo.
Internally, we animate using a 3ds Max model whose animation data we export using
a custom MaxScript. This results in a CSV file, with a special header with some meta-
information about the motion – such as frame rate, duration, and which joints are
used. This CSV file is processed into a UGOBE Motion File with a special Python
script.

Commands are tables of motions, each with associated state information, which
describe when that specific motion can be played. The Command playback system
(Animation System) gives Pleo much of his expressiveness and variability and at any
particular instant in time, there may be multiple motions to choose from. The
Animation System will choose a motion from among the group.

The backing code of an application is written in the PAWN scripting language, as is
the majority of the high-level behavior in Pleo. The scripts are compiled against the
Pleo include files, which detail all the native functions available in the Pleo firmware.
Scripts are processed using the PAWN compiler and a post-processing tool to
arrange the code into pageable code blocks. For the majority of Pleo applications,
there are three PAWN VMs available at run-time to execute various scripts. These are
detailed below. Note that PAWN script files are usually suffixed by a .p extension.

Internally, we use Python scripts to process the majority of resources. We describe an
application and its associated resources using a UGOBE Project File, or UPF. This is
an XML-formatted file that lists all resources and sets various build options for those
resources. These tools will be demonstrated below. Note that Python files are usually
suffixed by a .py extension.

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 6 of 20

In Life OS 1.1, we have implemented four different instances of the PAWN VM. We did
this to support a kind of multi-tasking without having to make extensive changes to
the PAWN language itself. The four VMs we refer to as: sensor, main, behavior, and
user. These are detailed below.

NOTE: Every script can contain an init and a close function. If a script contains an

init function, it will be called just after the script has been successfully loaded. The

close function will be called just before the script is unloaded. Both of these

functions are optional – if they do not exist, no error will occur.

The Sensor VM is the VM designed to execute the sensors.amx scripts, which
contains the on_sensor callback function. This function is called on each sensor
‚trigger‛. A trigger is when a sensor has changed in a meaningful way. For example, a
touch sensor would trigger on a ‚touch‛ or a ‚release‛, but a sound loudness sensor
would trigger only when there is a sound loudness change of greater than X amount –
the X value being programmable at run-time.

The Main VM is the VM designed to run the main.amx script. This VM will look for a
public function named main. If it exists, it will be executed. The VM does not expect

this main function to return; that is, there is typically a while (true) or for (;;)

loop within the main function, preventing it from ever returning. But if the main
function does return, the Main VM will simply call the main function again. This script

is typically used to track some global property or properties – set in response to some
sensor trigger in the sensors script – and then execute another script in the Behavior
VM.

The Behavior VM is the VM designed to run any other arbitrary script. Scripts are
loaded with a vm_exec native function, which takes a script ID or name as a
parameter. The VM will load this script and look for a public main function. If there is a

public main function, it will be called. The current running status of the script in the

Behavior VM will be stored in a property named property_script_status. When the
main function in the script exits, the close function – if any – will be called. When the

close function exits, the property_script_status will be set to ‚done‛. The main script

will typically poll this property and, when it is done, it can load some other script.

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 7 of 20

The User VM is the VM designed to run a script outside the current application
context. The current application context usually means any scripts running in the
Sensor, Main, and Behavior VM. When an application is loaded, it may use these three
VMs. But the script running in the User VM can run whether an application is running
or not, and does not automatically start or stop with an application. This allows some
very interesting utility scripts to be written, from debug scripts to installer scripts.

The API exposed to PAWN from the Life OS firmware is referred to as the native
interface. We have broken up the exposed functionality into related groups, which
roughly match the application and OS services implemented in the Life OS. Each
group, or module, API is defined in a PAWN include file, using the .inc file suffix. The
modules include:

 Animation: functions dealing with Commands

 Application: functions dealing with loading and unloading applications

 Attention: functions related to Pleo to Pleo communication

 Camera: functions related to camera functionality

 common/command_status: definitions for Command status

 common/message_type: definitions for all log message types

 default: no functions defined, but defines values for Pleo API versions

 Drive: functions related to the Drive System. See the PPG for details

 File: File IO functions for DataFlash and SD Card

 Joint: functions dealing with moving individual joints

 Log: functions dealing with log, or monitor, output

 Motion: functions that deal with motion playback

 pleo/active_system: definitions for the high-level components in firmware

 pleo/age: definitions possible age values in Pleo

 pleo/joints: definitions for all joints available in Pleo

 pleo/limits: definitions of data and stack space available for each Pawn VM

 pleo/mood: definitions for possible mood values of Pleo

 pleo/pose: definitions for possible ‘poses’ of Pleo

 pleo/properties: definitions of global system properties

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 8 of 20

 pleo/sensors: definitions for all sensors available in Pleo

 Property: functions dealing with the Property system

 Resource: functions dealing with resource (URF) files

 Script: functions dealing with the PAWN VMs

 Sensor: functions dealing with sensors

 Sound: functions dealing with sound playback

 String: functions dealing with PAWN strings

 Time: functions dealing with time

 Util: useful utility functions

There are additional modules in Life OS 1.0 available for use by the Pleo personality
module (PM) however; these are not being described here.

This example will demonstrate a very simple application that will play a sound in
response to a sensor touch. This application consists of one script and one sound file.
This will give you a rough idea of how Pleo applications are built, using the Python-
based build tools that will be included in the PDK. Other tool sets may be used in the
future to build Pleo applications.

All the tools needed to build Pleo applications, including the Pawn compiler and
Python interpreter, are included in the PDK.

It is required that you add the location of the build tools – pdk/bin on Windows and
pdk/macosx on OS X – to your PATH environment variable. This will allow the project
files to be identical on all supported platforms, simplifying portability. This can be
done globally, or the helper build scripts can be used to perform this for you.

Included in the PDK will be a template project. This project includes a skeleton of a
basic Pleo application. We will use this template as a base to create our new
application. Follow these steps to create a new work area:

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 9 of 20

1. Create a new folder named ‚touch_test‛ under the examples folder in the pdk
folder. Our template project files assume relative paths, so it is best to keep all
the examples/projects at the same level.

2. Copy the sensors.p PAWN file from the template folder to your newly created
touch_test folder.

3. Copy and rename the template.upf file to touch_test.upf in your touch_test
folder.

4. Create a sounds folder under your touch_test folder.

5. Place a WAV file in the sounds folder you want to play in response to the touch
sensor. This WAV file should be in 11k, 8-bit, mono PCM format. There are
example sounds in the ${pdk}/media/sounds folder, if you wish to experiment
with those.

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 10 of 20

You should now have a folder that looks like this:

/pdk

 /examples

 /touch_test

 /sounds

 sample.wav

 sensors.p

 touch_test.upf

Now we need to edit the sensors.p file to add the code that responds to the touch
sensor. First, let's review the code. It is as follows:

 1 //

 2 // Very simple sensors.p example. Add code to on_sensor for those

 3 // sensors you would like to respond to.

 4

 5 //

 6 // save space by packing all strings

 7 #pragma pack 1

 8

 9 #include <Log.inc>

10 #include <Script.inc>

11 #include <Sensor.inc>

12

13

14 public init()

15 {

16 print("sensors:init() enter\n");

17

18 print("sensors:init() exit\n");

19 }

20

21 public on_sensor(time, sensor_name: sensor, value)

22 {

23 new name[32];

24 sensor_get_name(sensor, name);

25

26 printf("sensors:on_sensor(%d, %s, %d)\n", time, name, value);

27

28 switch (sensor)

29 {

30 }

31

32 // reset sensor trigger

33 return true;

34 }

35

36 public close()

37 {

38 print("sensors:close() enter\n");

39

40 print("sensors:close() exit\n");

41 }

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 11 of 20

At line 7, we add a PAWN option to ‚pack‛ strings in the resultant AMX file. By default
in PAWN will store strings into arrays of cells. A cell in our case is a 32-bit value, so
each string would take up a large amount of memory. Adding the pack option will put
four characters into each cell.

At lines 9-11, we call out the Pleo include files that contain the native function

prototypes that we need in this script. These include files can be found in the

pdk/include folder. In this case, Log.inc defines the print and printf functions,

Script.inc includes the proper prototypes for our init, and close functions and the

Sensor.inc defines the prototype for on_sensor and defines the functions
sensor_get_name and pulls in the proper definitions for the sensor_name
enumeration, located in the pdk/include/pleo folder.

Lines 14-19 define an initialization function that will be called by the Pleo firmware
when this script is loaded. This function is optional – if it is not present, the firmware
will continue on.

Lines 21-34 define the on_sensor function that is called each time a sensor is
‚triggered‛. A trigger may be a touch sensor press, a touch sensor release, a sound
loudness change, etc. We will explain this function in more detail below when we add
some code to it.

Lines 36-41 define a close function that is called before the script is unloaded. Like
the init function, this is an optional function.

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 12 of 20

Some general notes on this script:

NOTE: The three functions defined here are declared ‚public.‛ This is a PAWN
keyword that will add that function name to a list of functions that may be called from
the firmware. You can define your own local functions, which would not use the public
keyword.

NOTE: There are no integral types used in this script. All variables in PAWN are cells,
arrays of cells, or enums. The one enum in this script is sensor_name, which is a
collection of sensor Ids whose values are shared between the firmware the PAWN
script.

NOTE: On line 23, a variable is declared using the new keyword. This tells the PAWN
compiler to allocate space for that variable in the data section of the script. In this
case, it is an array of cells. This results in the reservation of 128 bytes in the resultant
AMX data section.

Now we want to add the additional code necessary to play a sound in response to a
touch sensor. Follow these steps:

1. At line 12, add the following:

#include <Sound.inc>

This include file defines the sound playback natives that will be used to play sounds

2. At line 13, add the following:

#include ―sounds.inc‖

This will pull in an include file that defines the sound names available for playback.

The sounds.inc file now gets created when we build the project, as described below.

3. After line 29, include this code:

case SENSOR_BACK:

 if (value == 0)

 {

 sound_play(snd_sample);

 }

You should use the name ‚snd_<name>‛, where <name> is the base file of the WAV
you placed in the sounds folder.

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 13 of 20

The resultant code should look like this:

//
// Very simple sensors.p example. Add code to on_sensor for those

// sensors you would like to respond to.

//

// save space by packing all strings

#pragma pack 1

#include <Log.inc>

#include <Script.inc>

#include <Sensor.inc>

#include <Sound.inc>

#include "sounds.inc"

public init()

{

 print("sensors:init() enter\n");

 print("sensors:init() exit\n");

}

public on_sensor(time, sensor_name: sensor, value)

{

 new name[32];

 sensor_get_name(sensor, name);

 printf("sensors:on_sensor(%d, %s, %d)\n", time, name, value);

 switch (sensor)

 {

 case SENSOR_BACK:

 if (value == 0)

 {

 sound_play(snd_growl);

 }

 }

 // reset sensor trigger

 return true;

}

public close()

{

 print("sensors:close() enter\n");

 print("sensors:close() exit\n");

}

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 14 of 20

Now it is time to build the project. The end result of the build will be a touch_test.urf
file, which can be written onto an SD Card, inserted into Pleo, and executed.

First, we must edit the touch_test.upf file, which was simply copied from the
template.upf file. Here is what it looks like initially:

 0 <ugobe_project name="template">

 1

 2 <options>

 3 <set name="top" value="../.." />

 4 <include value="./include:${top}/include" />

 5 <tools>

 6 <pawn value="pawncc %i –V2048 –O2 -S64 -v2 -C- %I TARGET=100 -o%o" />

 7

 8 </tools>

 9 <directories>

10 <build value="build" />

11 <include value="include" />

12 </directories>

13 <sound adpcm=‖true‖ />

14 <motion version="3" />

15 <folders />

16 </options>

17

18 <set-default name="MEDIA" value="." />

19

20 <set name="SOUNDS" value="${MEDIA}/sounds" />

21 <set name="MOTIONS" value="${MEDIA}/motions" />

22 <set name="SCRIPTS" value="${MEDIA}/scripts" />

23

24 <resources>

25

26 <!-- Sounds -->

27 <sound path="${SOUNDS}/growl.wav" />

28

29 <!-- Motions -->

30 <motion path="${MOTIONS}/bow.csv" />

31

32 <!-- Scripts -->

33 <script path="sensors.p" />

34 <script path="main.p" />

35

36 </resources>

37 </ugobe_project>

Lines 2-16 define options that are passed to the build tools. Line 2 is a macro
definition to point to the root of the pdk folder. This allows other commands to use
this macro. Line 4 defines the include path to be used in the tools section. Line 6
defines the command line options to be passed to the PAWN compiler. Line 10
defines where to put the resultant files. Line 11 defines where to look for local

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 15 of 20

include files. Line 13 says to use version 3 (vectored) UMF files. Line 14 says to

code block the resultant AMX files. Line 15 says to put the sounds, motions, and
commands into folders in the destination folder.

Lines 24-36 define the actual resources that make up this application. The project tool
will enumerate through this list, building each resource. Then it will combine all of
those resources into the final pleo.urf file.

We need to make the following changes for our touch_test.upf file:

1. On Line 0, change the name of the project to ‚touch_test‛.

2. Remove line 30, since we do not use any motions in this sample.

3. Remove line 34, since we do not use a main.p script, but only a sensors.p
script.

The resultant UPF file should look like this:

<ugobe_project name="touch_test">

 <options>

 <set name="top" value="../.." />

 <include value="./include:${top}/include" />

 <tools>

 <pawn value="pawncc %i –V2048 -O1 -S64 -v2 -C- %I TARGET=100 -o%o" />

 </tools>

 <directories>

 <build value="build" />

 <include value="include" />

 </directories>

 <sound adpcm=‖true />

 <motion version="3" />

 <folders />

 </options>

 <set-default name="MEDIA" value="." />

 <set name="SOUNDS" value="${MEDIA}/sounds" />

 <set name="MOTIONS" value="${MEDIA}/motions" />

 <set name="SCRIPTS" value="${MEDIA}/scripts" />

 <resources>

 <!-- Sounds -->

 <sound path="${SOUNDS}/growl.wav" />

 <!-- Motions -->

 <!-- Scripts -->

 <script path="sensors.p" />

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 16 of 20

 </resources>

</ugobe_project>

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 17 of 20

In this step we call on the build tools which will take as input the above UPF file, process
each resource – sounds, motions, scripts, etc. – and then combine the result into a final
Ugobe Resource File (URF) which can then be executed on Pleo.

NOTE: We are using the Python build tools that we developed internally for Pleo. It is
based on the command line. That is, no fancy project or code editors – yet!

To start, open a Command Prompt (Windows), bash shell (cygwin), or a Terminal (OS X).
Change directories to the touch_test project folder and type the following:

../../bin/ugobe_project_tool touch_test.upf rebuild

Or, on OS X:

../../macosx/macprojtool touch_test.upf rebuild

The above assumes that you have added the bin or macosx directories to your path, to allow
the build tools to locate the proper Pawn compiler. There are also some Windows batch and
OS X shell scripts to assist in building. These build scripts add the necessary paths to the
system PATH temporarily and then call the build tools directly. The scripts include:

build.bat: this will build a Pleo 1.1 application on Windows Command Prompt

build.sh: this will build a Pleo 1.1 application on OS X, cygwin in Windows or Linux

They are located at the root of the examples folder. To use them, open a terminal and cd to
the example you wish to build. In this example, we will build the touch_test.

In a Windows Command Prompt:

..\build.bat touch_test

or in a cygwin bash shell or OS X Terminal:

../build.sh touch_test

You will see a lot of output from the build tools, such as:

*** Cleaning ***

 Removing include/sounds.inc

 Removing sounds.xml

 Removing include/scripts.inc

 Removing scripts.xml

 Complete Clean: Removing build directory 'build'

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 18 of 20

*** Prepocessing ***

 Updating enumeration XML 'sounds.xml'

 Creating enumeration 'include/sounds.inc'

 Updating enumeration XML 'motions.xml'

 no data for motions

 Updating enumeration XML 'commands.xml'

 no data for commands

 Updating enumeration XML 'scripts.xml'

 Creating enumeration 'include/scripts.inc'

 Updating enumeration XML 'user_properties.xml'

 no data for user_properties

*** Processing ***

 Converting ./sounds/growl.wav to build/sounds/4096.usf adpcm:1 pitch:1

freq:11

025

 @ pawncc sensors.p –V2048 -O2 -S64 -v2 -C- -iinclude -i..\..\include

TARGET=100 -obuild/sensors.amx

Pawn compiler 3.3.3951M Copyright (c) 1997-2008, ITB

CompuPhase

Header size: 212 bytes

Code size: 300 bytes

Largest overlay: 0 bytes

Data size: 128 bytes

Stack/heap size: 256 bytes; estimated max. use=43 cells (172 bytes)

Total requirements: 596 bytes

*** Writing build/touch_test.urf ***

Bad version element in UPF or cannot get Subversion revision. Using 0

Version is 0

Build Time is 1212852088 (Sat Jun 07 11:21:28 2008)

writing build/sounds/4096.usf (growl) at 0x200L

writing build/sensors.amx (sensors) at 0x2200L

writing UGSF toc at 0x2600L

writing UGMF toc at 0x2630L

writing UGCF toc at 0x2638L

writing AMX toc at 0x2640L

writing PROP toc at 0x2670L

 URF file fits: 9856 of 3649536. 3639696 free

Adler32 crc is 615D714A

build time: 0.141000 sec

If the build was successful, you will have a touch_test.urf file in the build directory off the
touch_test folder. Copy this file to an SD Card, insert into Pleo (while turned off), and then
turn on Pleo. Touch his back, and you should hear the sound that you added.
Congratulations!

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 19 of 20

The above description builds a URF for execution on Pleo 1.1. This URF will NOT execute on
a Pleo with firmware version 1.0. If you wish to build for Pleo 1.0, there are some changes
that need to be made. They include:

1. Change the name of project to ‘pleo’. Pleo 1.0 will only execute a pleo.urf.

2. Change the Pawn command line element to use the Pawn version 3.2 compiler
and remove unsupported options from the command line.

3. Add the pleocc post-processing tool to modify the Pawn AMX files for 1.0.

4. Add the option to tell the build tools to call the blocking tool on all scripts.

The result should look like this:

<ugobe_project name="pleo"> <!—- Change 1 -->

 <options>

 <set name="top" value="../.." />

 <include value="./include:${top}/include" />

 <tools>

 <!—- Change 2 -->

 <pawn value="pawncc32 %i -O1 -S64 -v2 -C- %I TARGET=100 -o%o" />

 <!—- Change 3 -->

 <block value="pleocc -b512 -v %i" />

 </tools>

 <directories>

 <build value="build" />

 <include value="include" />

 </directories>

 <umf value="3" />

 <folders />

 <block /> <!—- Change 4 -->

 </options>

See the Pleo 1.1 Porting Guide for more details on the differences between Pleo 1.0 and
Pleo 1.1.

PAWN Scripting in LifeOS v1.x

UGOBE Confidential Rev 0.2
 Page 20 of 20

Revision Date Comment

0.1 Initial version

0.2 May 30, 2008 Some formatting changes. Additional content

0.3 June 7, 2008 Modified to default to 1.1 build, with notes wrt Pleo 1.0

0.4 August 18, 2008 Small updates to include list

	Table of Contents
	PAWN Scripting in Life OS v1.x
	Overview
	Audience
	Objective
	Pleo Developers Kit (PDK)
	Support

	Background
	Life OS Applications
	Sounds
	Motions
	Commands
	Scripts
	Build Tools

	PAWN Virtual Machines (VMs)
	Sensor VM
	Main VM
	Behavior VM
	User VM
	Life OS PAWN native interface

	Pleo Application Example
	Overview
	Prerequisites
	Preparation
	Code Changes
	Project File Changes
	Building
	Pleo 1.0 Support

	Document Revision History

