
 
 

 

Pleo Programming 
Guide 

 

 

Confidential – Not for external distribution/publication!

 



 

 

Table of Contents

Introduction............................................................... 4  

Architecture .............................................................. 5  
Hardware...........................................................................................................6 
Software ............................................................................................................7 

Pleo Development Kit (PDK) ........................................ 8  
Prerequisites .....................................................................................................8 

Python...........................................................................................................8 
Pawn .............................................................................................................8 

Directory structure.............................................................................................9 
Projects ...........................................................................................................10 

Building projects..........................................................................................10 
Loading Files to the SDCARD.........................................................................11 
Hello Pleo........................................................................................................11 

Media Creation ........................................................ 13  
Making Motions ...............................................................................................13 
Making Sounds ...............................................................................................13 
Making Commands .........................................................................................13 
Making Scripts.................................................................................................13 

Build Tools .............................................................. 14  
Ugobe Project File...........................................................................................14 
Built Tools: Source vs. Binary .........................................................................16 
Project layout ..................................................................................................16 
Sound processing ...........................................................................................20 
Motion processing ...........................................................................................20 
Command processing .....................................................................................21 
Pawn script processing ...................................................................................21 

Pleo Scripting .......................................................... 24  
Sensor VM ......................................................................................................24 
Main VM ..........................................................................................................25 
Behavior VM....................................................................................................25 
User VM ..........................................................................................................25 
Scripting Limits................................................................................................26 

Pleo API .................................................................. 27  
Joint System....................................................................................................27 
Motion System ................................................................................................29 
Property System..............................................................................................30 

Persistence .................................................................................................32 
Leaky Integrators ........................................................................................32 
Reporters ....................................................................................................32 

Drive system ...................................................................................................33 
Adding Drives..............................................................................................33 
Behaviors ....................................................................................................34 

Sensors System ..............................................................................................35 
Raw sensors. ..............................................................................................35 

Sound System.................................................................................................55 
Pleo to Host Connectivity ................................................................................56 
Packet System ................................................................................................57 



 

Pleo 1.0.x ....................................................................................................58 
Sending ..................................................................................................58 
Receiving................................................................................................58 

Pleo 1.1.x ....................................................................................................58 
Sending ..................................................................................................59 
Receiving................................................................................................59 
Notes: .....................................................................................................60 

Appendices ............................................................. 61  
File Formats ....................................................................................................61 

Sound Files .................................................................................................61 
Motion Files.................................................................................................62 
Command Files...........................................................................................63 
Resource Files ............................................................................................64 

Document Revision History ....................................... 67  

 



 

Introduction 

Pleo is designed to be modified and extended in multiple ways, from the 
simplest, such as replacing a built-in sound with one of your own – to the most 
complex, such as writing a new application for Pleo using the built-in scripting 
language. 

This guide will show you how to use these various techniques to modify and 
extend your Pleo. 

There are many tools associated with developing Pleo’s applications and 
extensions. This document attempts to describe each of these tools in order to 
allow a wide range of users to modify and extend Pleo’s functionality. 

The software built into Pleo is referred to as the LifeOS. The LifeOS architecture 
closely resembles the standard operating system model, using a layered system 
of modules. The LifeOS is broken down into three major layers:  

• low-level: This layer is an interface to the real hardware components. 
This includes the sensor drivers that read sensor information, passing it 
up to the mid-level layer, and output systems like the motor controllers, 
which move joints.  

• mid-level: This layer provides the application services to the high-level. 
It performs much of the processing of the sensor input, and provides the 
native function interfaces to the high-level layer. 

• high-level: This layer is where the majority of applications will reside, 
implemented using the Pleo scripting language. 

The Architecture chapter will summarize the available hardware resources and 
the main software components in the mid-level. Later chapters will explain how 
to create new applications for Pleo. 

 



 

Architecture 

Pleo consists of hardware and software components: 

 



 

 

Hardware 

 
Pleo hardware consists of a body with:  

• 2 ARM7 CPUs: One in Pleo’s head to handle camera, sound 
input, IR send/receive, mouth IR interrupter, and head and chin 
sensor input. Another ARM7 in the body handles motor control, 
touch sensors, sound output, and the high-level layers of the 
Pleo software. 

• 14 motors: 2 per leg (shoulder/elbow and hip/knee), 1 for the 
torso, 2 for the tail (horizontal/vertical), 2 for the neck 
(horizontal/vertical) and one for the eyes and mouth. 

• 8 touch sensors: 1 per leg, 1 on Pleo’s rear, 1 on the back or 
neck, 1 on the chin, and 1 on the head. 

• 4 foot switches: 1 per foot. 
• 1 IR transceiver: For communication with other Pleos and future 

Ugobe life forms. May be compatible with some standard IR 
remotes. 

• 1 IR interrupter in the mouth: Detects the presence of an object 
in Pleo’s mouth. 

• 1 orientation (or ‘tilt’) - sensor: Recognizes Pleo's current 
orientation, from six possible states. 

• 1 shake sensor: Detects whether Pleo is being shaken to wake 
him from sleep or low-power mode. 

• 2 microphones: Detect sound volume changes and direction. 
• 1 camera: Detects light levels, identifies and tracks objects 

(color blobs). 
• 1 USB port: For control and programming. 
• 1 battery: Reads current charge and temperature. 

(See the Pleo Hardware Specification for more detail) 



 

Software 

The software that runs in Pleo is divided into three layers: 

• Low-level layer (or Driver) 
The low-level software deals directly with hardware, including 
the motor control, sensors, SD Card, battery, USB, camera, 
sound input, and sound output. It is implemented as a set of 
drivers to each hardware component. Sensor information is 
provided to the mid-level layer through a Blackboard system. 

• Mid-level layer 
The mid-level layer provides the application functional support 
to the high-level scripting layer. This layer contains all the 
various systems of Pleo. The high-level C system components 
include: 

o Sequence system    
o Sound system: the sound system is responsible for the 

playback of sound resources. Sound resources can be 
included as part of an application, built into Pleo, or captured 
from Pleo’s microphone input. 

o Motion System: the motion system is responsible for 
controlling all of Pleo’s motors, or joints. It provides an API to 
control individual joints, playback -preconstructed motion 
resources, and provide detailed feedback about the current 
status of all the joints. 

o Property System: the property system allows the interchange 
of data between the mid-level and the script layers, or between 
different Vms. 

o Script System: the script system implements the Pleo virtual 
machine and allows applications to load, unload, and execute 
other script resources. 

• High-level layer  
The script layer implements the highest-level functionality of 
Pleo. This is essentially Pleo’s personality, determining how 
and when he responds to sensor input and internal goals. 



 

Pleo Development Kit (PDK) 

The Pleo Development Kit is a package of tools, documentation, and samples to 
assist in writing new applications for Pleo. This chapter details the use of the 
tools included in the PDK and gives a brief overview of how to get started 
writing Pleo applications. 

Prerequisites 

The development environment for Pleo applications is based primarily on 
open source tools. This includes Python, Pawn, GTK, and wxWidgets, 
among others.  

Note: Pleo applications at Ugobe have been developed using both 
Windows and Linux hosts. Other operating systems may function 
properly, but are not tested or supported by Ugobe. 

Python 

There are currently two possible distributions of the PDK – binary 
and source. Almost the whole package is the same, except for the 
bin directory. 

The binary version is packaged using the py2exe tool, thus 
obviating the need for any installed tools before using the build 
tools. The main build tool is named ugobe_build_tool.exe, located 
in the pdk/bin directory. The main issue here is that it is Windows-
only. 

The source version of the PDK requires only a Python installation 
and - depending on the version of Python used – an extra Python 
module or two. The Python tool set uses the ElementTree module, 
which is built into Python 2.5 and later, but needs to be installed in 
Python versions 2.4 or earlier.  

Pawn 

Since the Pleo firmware is built with a specific version of the Pawn 
run-time code, we include the matching Pawn compiler as part of 
the PDK. Note though that you can still use the released 
distributions of the Pawn system directly from CompuPhase 
(http://www.compuphase.com/pawn/pawn.htm), if it matches or is 
compatible with the version of Pawn built into Pleo. As a reference: 

o Pleo 1.0.x firmware uses Pawn version 3.2.3664 
o Pleo 1.1.x firmware uses Pawn version 3.3.3930 



 

Other Notes 

Some of our Python code works directly with a tethered Pleo. In 
this case, we need a Python module to communicate over serial 
ports. We use the pyserial module located here: 
http://pyserial.sourceforge.net/ 

We have developed a number of GUI tools in-house, also using 
Python. The vast majority of these have been developed using 
PyGTK and the Glade GUI building tools. 

Much of the initial development of Pleo took place on Linux, using 
Make and Makefiles. In order to ease the work on the part of the 
Windows folk, we found the cygwin package invaluable during 
development. It should be noted the first versions of the build tools 
were also developed in the cygwin environment, so there may still 
be some 'unix-isms' in place. But we have made some effort to 
ensure that the tools work well in a standard Windows command 
prompt as well. 

Directory structure 

The Pleo Development Kit (PDK) is the collection of tools needed to 
develop projects (or applications) for Pleo. The tools consist of 
applications written by Ugobe to process raw media assets to the 
compiled, optimized format for Pleo, utilities to aide in the creation of 
media resources, and include files that define the interface available to 
the scripting language. There are also third-party tools required to build 
projects for Pleo. These are described next. 

The file structure for the PDK is currently laid out as: 

/pdk 
    /bin 
     ...tools needed to build and convert resources... 
    /include 
        Animation.inc 
        File.inc 
        Motion.inc 
        ...other global includes... 
        /common 
         ...constants and types used across Ugobe 
products... 
        /pleo 
            properties.inc 
            sensors.inc 
            joints.inc 
            ...other Pleo-specific includes... 
    /examples 
        /template 
            template.upf 



 

            sensors.p 
    /media 
        /motions 
         ...motion csv files from animation software... 
        /sounds 
         ...sound wav files for sounds that Pleo can 
play... 
        /commands 
         ...command csv file examples... 
    /tools 
        /drivers 
         ...Windows Pleo drivers... 

Projects 

The build system is based on the project concept. Each project is – 
typically – created in its own directory, with one Ugobe project file (UPF) 
that contains all information necessary to build a complete file set, ready 
for an SD Card. 

A project can consist of the following file types: 

• Sounds: Currently, we support 11k, 8-bit mono sound 
playback. Any sounds referenced in the UPF file will be 
converted using the built-in Python audioop module. Optimally, 
you should use the highest quality source files as possible, and 
the build tools will convert them to the required output format. 
After processing, they become USF (Ugobe Sound Files) files. 

• Motions: Motions are the animation data we use to animate 
Pleo at run-time. The animations are exported from 3dsMax as 
CSV files and during build time become UMF (Ugobe Motion 
Files) files. 

• Scripts: Scripts are Pawn source code (.p files), which contain 
the controlling script code. After processing they become AMX 
files. 

• Properties:  

Building projects 

Once the project file contains all references to the resources that 
will be used, and how they should be built, it is processed with the 
ugobe_project_tool application. This application processes the 
UPF file, building each resource as appropriate, and places the 
result in the build folder. 



 

 

Loading Files to the SDCARD 

Once the project has been built, the files in the build folder can be copied 
to the SD Card. After the resource files (AMX, USF, and UMF) are placed 
on the card, the SD Card is inserted into Pleo. If Pleo is currently powered 
on, the firmware will attempt to start execution of the scripts on the SD 
Card. 

Update: Recent versions of the PDK now combine all sound, motion and 
script resources into one file – called a Ugobe Resource File. This file is 
named based on the top-level elements name attribute.  So, only this one 
file is now needed.  

Note: see the section on Shadowing Resources for a more detailed 
discussion of how resources are located and loaded. 

Hello Pleo 

This section gives a quick walkthrough of a very simple Pleo application.  

The Hello Pleo application waits for any touch sensor to be triggered, and 
plays a sound in response. 

Ensure that the PDK has been installed. This includes all the tools 
necessary to compile motions, sounds and scripts into the formats 
playable on Pleo.  In the following sections, we use {pdk} to signify where 
the Pleo Development Kit has been installed. 

To start a new project, it is easiest to simply copy the 
{pdk}/examples/template to a new folder within the examples folder. For 
this sample, we will simply name it “sensor_test”. You will also want to 
rename the default template.upf to sensors.upf. You should have a 
directory structure that looks like the following: 

/sensor_test 
 /sounds 
  beep.wav 
 sensors.upf 
 sensors.p 

Open sensors.p. In the on_sensor function, add this code: 

case SENSOR_HEAD: 
sound_play(snd_beep); 

This will cause the beep sound to be played whenever the head sensor is 
triggered (pressed or released). 



 

To build this application, open a command window (a terminal window, 
bash shell or cygwin window). Change directories – using ‘cd’ – to 
{pdk}/examples/sensor_test. At the prompt, type the following: 

../../bin/ugobe_project_tool.exe sensor_test.upf rebuild 

This will execute the main build tool – ugobe_project_tool – which will 
parse the given UPF file and compile each listed resource – sound, 
motion, etc. – into a newly created ‘build’ folder. 

If all resources are built correctly, then a pleo.urf (Ugobe Resource File) 
will also be created in the build folder. This is a combined file of all 
resources, such as sounds, motions, and scripts.  

Copy this pleo.urf file to a blank SD Card. Insert the SD card into a Pleo 
that has been turned off, and then turn Pleo on. When you touch his 
head, you should hear the beep sound. 



 

Media Creation 

Media is clearly an important element when creating Pleo applications. There 
are two main resources that are needed by Pleo – not including scripts: motions 
(synonymous with animations) and sounds. 

This section will give an overview of how these resources are created. 

Making Motions 

Currently, the only way to generate motions for Pleo is through a special 
exporter created especially for 3dsmax (versions 7+). There is a Pleo 
model – or rig – that is animated by the animator and then exported to a 
format usable by the project-building tool for Pleo. 

The 3dsmax exporter will export motion data as comma-separated value 
(CSV) files. These files are fed to the Pleo project tool, which will write out 
Ugobe Motion Files (UMF). 

Making Sounds 

Pleo can currently play back only one sound at a time. The format of the 
audio should be 11k, 8-bit, mono. The data should be in a .WAV file for 
use by the Pleo project building tools. 

The inputs to the Pleo project tools are .WAV files. These files will be 
converted to Ugobe Sound Files (USF). 

Making Commands 

Making Scripts 



 

Build Tools 

The PDK includes the build tools necessary to convert resources from a 
common source format to a format that has been optimized to play back or 
execute within Pleo. The following graphic illustrates this: 

 

 
 

As seen above, the raw resource assets get converted from a source format into 
an optimized binary format that is then playable on Pleo.  

The first row above shows that there is a tool or editor for each raw resource 
type. For Sound, this may be SoundForge. For Pawn, this may simply be 
Notepad, vi or Quincy (the IDE that accompanies the Pawn distribution from 
CompuPhase). 

The second row shows what data format our tools expect as input. For Sound, 
that is WAV. For Motions and Commands, comma-separated-value text files. 
And for Pawn, Pawn source files. 

The third row shows the individual build tool that handles that resource type. For 
Sounds, that is wav2usf[.py]. For Motions, csv2umf[.py]. For Commands, 
csv2ucf[.py]. And for Pawn, the (included) Pawn compiler. See the Source vs 
binary section for more details on what the .py signifies. 

The last row shows the final output of the individual build tools. Each of these is 
an optimized binary format that can execute directly within Pleo. 

Ugobe Project File 

The Ugobe Project File (.UPF) is an XML-formatted file which lists all of 
the resources required for any project. The main build tool – 
ugobe_project_tool – parses this file, and calls out to each of the build 

Sound Tool 

Sound (.WAV) 

WAV2USF 

Sound (.USF) 

Mo3on Tool 

Mo3on (.CSV) 

CSV2UMF 

Mo3on (.UMF) 

Command Tool 

Command (.CSV) 

CSV2UCF 

Command (.UCF) 

Pawn Editor 

Pawn (.P) 

pawncc 

Pawn (.AMX) 



 

tools for each type of resource. It then binds all of these compiled 
resources together into the final Ugobe Resource File (.URF). 

 
Here is an example UPF file from the PDK: 

 1 <ugobe_project name="template"> 
 2 
 3  <options> 
 4    <set name="top" value="../.." /> 
 5    <include value="./include:${top}/include" /> 
 6    <tools> 
 7       <pawn value="pawncc %i -V2048 -O2 -S64 -v2 -C- %I 
TARGET=100 -o%o" /> 
 8     </tools> 
 9     <directories> 
10       <build value="build" /> 
11       <include value="include" /> 
12     </directories> 
13     <umf value="3" /> 
14     <folders /> 
15   </options> 
16 
17   <set-default name="MEDIA" value="../../media" /> 
18 
19   <set name="SOUNDS" value="${MEDIA}/sounds" /> 
20   <set name="MOTIONS" value="${MEDIA}/motions" /> 
21   <set name="COMMANDS" value="${MEDIA}/commands" /> 
22   <set name="SCRIPTS" value="${MEDIA}/scripts" /> 
23 
24   <resources> 
25 
26     <!-- Sounds --> 
27     <sound path="${SOUNDS}/growl.wav" /> 
28 
29     <!-- Motions --> 
30     <motion path="${MOTIONS}/bow.csv" /> 
31 
32     <!-- Commands --> 
33 <!--    <command path="${COMMANDS}/name.csv" /> --> 
34 
35     <!-- Scripts --> 
36     <script path="sensors.p" /> 

Resource 
File 

(.URF) 

Sounds 

Mo3ons 

Commands 

Scripts 

Proper3es 



 

37     <script path="main.p" /> 
38  
39     <!-- User Properties --> 
40 <!--    <user_property path="my_prop" /> --> 
41  
42   </resources> 
43 </ugobe_project> 

 
At Line 1, we see the root ugobe_project element. The one attribute is 
name, which is used as the name of the output URF file. 

Lines 3-15 give options to the build tools. These are described in more 
detail under each tool description. 

Lines 17-22 define some path macros. This makes it easier to refer to 
where the resources are located and allows moving those resources and 
minimizing changes needed to the UPF file. 

Lines 24-42 list all of the resources that make up this project. Each 
element defines the type of resource, where that resource lives, and 
optionally contains additional build instructions. More detail is given in 
each build tool description. 

Built Tools: Source vs. Binary 

When we originally build the tools that process each resource, we did so 
with the open source Python scripting language. We still use the source 
versions of these tools internally at Ugobe. 

When we were putting together the PDK, we decided it would be more 
efficient to package these Python source tools as binaries for each 
platform. The easiest way to accomplish this is with other freely available 
tools. For Windows, we use the py2exe module. For OS X, we use the 
py2app module. And for Linux we use the cx_Freeze module. 

Project layout 

A typical project folder will look something like this: 

/project 
 /sounds 
  sound1.wav 
 /motions 
  motion1.csv 
  motion2.csv 
 /commands 
  command1.csv 
 project.upf 
 sensors.p 
 main.p 



 

   
Note that in the PDK, to save space, we refer to the global media folder, 
so many of the examples do not have a local sounds, motions or 
commands folder. But the build concepts remain the same. 

When we build this project, we will typically use a command line like so: 

python ..\..\bin\ugobe_project_tool project.upf rebuild 

The first part is the ‘master’ build tool – in this case we are using the 
Python source version. This loads the given UPF file, and will call out to 
the individual build tools for each resource type. 

*** Cleaning *** 
  Removing include/sounds.inc 
  Removing include/sounds.xml 
  Removing include/motions.inc 
  Removing include/motions.xml 
  Removing include/scripts.inc 
  Removing include/scripts.xml 
  Complete Clean: Removing build directory 'build' 
 
*** Prepocessing *** 
  Updating enumeration XML 'sounds.xml' 
  Creating enumeration 'include/sounds.inc' 
  Updating enumeration XML 'motions.xml' 
  Creating enumeration 'include/motions.inc' 
  Updating enumeration XML 'commands.xml' 
  no data for commands 
  Updating enumeration XML 'scripts.xml' 
  Creating enumeration 'include/scripts.inc' 
  Updating enumeration XML 'user_properties.xml' 
  no data for user_properties 
 
*** Processing *** 
  Converting ../../media/sounds/growl.wav to 
temp/sounds/growl.usf adpcm:0 pitch 
:1 freq:11025 
  Converting ../../media/motions/bow.csv to 
temp/motions/bow.umf, UMF3 format 
done writing umf3 file; average vector length=15, count=98; 
frames=102 
  Building script 'sensors.p' 
  execute 'sensors.p' 
  @ pawncc sensors.p -V2048 -O2 -S64 -v2 -C-  -iinclude -
i..\..\include TARGET=1 
00 -otemp/scripts/sensors.amx 
Pawn compiler 3.3.3951M                 Copyright (c) 1997-
2008, ITB CompuPhase 
 
Header size:            192 bytes 
Code size:              244 bytes 
Max. overlay size:     2048 bytes; largest overlay=0 bytes 
Data size:              128 bytes 



 

Stack/heap size:        256 bytes; estimated max. use=43 
cells (172 bytes) 
Total requirements:    2624 bytes 
  Building script 'main.p' 
  execute 'main.p' 
  @ pawncc main.p -V2048 -O2 -S64 -v2 -C-  -iinclude -
i..\..\include TARGET=100 
-otemp/scripts/main.amx 
Pawn compiler 3.3.3951M                 Copyright (c) 1997-
2008, ITB CompuPhase 
 
main.p(30) : warning 225: unreachable code 
 
Header size:            148 bytes 
Code size:              204 bytes 
Max. overlay size:     2048 bytes; largest overlay=96 bytes 
Data size:              120 bytes 
Stack/heap size:        256 bytes; estimated max. use: 
unknown, due to "sleep" i 
nstruction 
Total requirements:    2572 bytes 
 
1 Warning. 
 
*** Writing build/template.urf *** 
Version is 0 
Build Time is 1216936757 (Thu Jul 24 17:59:17 2008) 
writing temp/sounds/growl.usf (0x1000) at 0x200L 
writing temp/motions/bow.umf (0x2000) at 0x4200L 
writing temp/scripts/sensors.amx (0x4000) at 0x4800L 
writing temp/scripts/main.amx (0x4001) at 0x4a34L 
writing UGSF toc at 0x4e00L 
writing UGMF toc at 0x4e30L 
writing UGCF toc at 0x4e60L 
writing  AMX toc at 0x4e68L 
writing PROP toc at 0x4ec0L 
  URF file fits: 20176 of 3649536. 3629376 free 
 
Adler32 crc is F227783F 
build time: 0.768000 sec 

From this output, we see the following sections: 

First, since we are issuing the ‘rebuild’ command, we clean up everything 
from previous builds. This includes the temporary folder with all built 
resources, the final build directory where the URF is put, and the include 
folder with the intermediate includes files for each resource type. 

Next, we are generating the include files to use within the Pawn script. 
This consists of creating a list of each resource, grouped by type, and 
then assigning each an ID. This information is then written to an inc file. 
By default, these include files are placed in a local ‘include’ folder. This 
can be changed via the <options/directories/include> element in the UPF 



 

file. For example, this is the sounds.inc file generated from the PDK 
template project: 

/***************************************************\ 
 *                    WARNING                      * 
 *     This file was automatically generated by    * 
 * enumgen.py.  Do not edit directly or put under  * 
 *                source control.                  * 
\***************************************************/ 
 
enum sound_name { 
  snd_none  =     0, 
  snd_min   =  4096, 
  snd_growl =  4096, 
  snd_max 
}; 

 
Note that the names of the sounds used within Pawn are simply the 
original resource names, with a “snd_” pre-pended. For example, what 
started as growl.wav is named snd_growl, with an ID of 4096. 

Note that each resource type gets its own range of IDs, so that they do 
not overlap. Currently, these ranges are: 

Resource Type Range in Hex Range in Decimal 

Sounds  0x1000 - 0x1FFF 4096 - 8191 

Motions  0x2000 - 0x2FFF 8192 - 12287 

Commands  0x3000 - 0x3FFF 12288 - 16383  

Scripts  0x4000 - 0x4FFF 16384 - 20479 

Properties  0x5000 - 0x5FFF 20480 - 24575 

 
We use these hex ranges in many areas since it is easier to read, and 
gives us a wider range of values for each type. 

Back to the build output: we now see each resource listed in the UPF 
being built by the individual tools. In this case, we are building the sound, 
the motion file, then the two script files. Additional options for these 
builders are specified in the <options> element of the UPF file.  

Last, after all the individual resources have been built successfully, the 
build tool will combine all of these resources into one Ugobe Resource 
File (URF). By default, this will be put into a local ‘build’ directory. This 
can be changed via the <options/directories/build> element. 



 

Sound processing 

The tool used to convert input wave files into the Ugobe Sound File (USF) 
is wav2usf.py. In the binary tools release, the compiled version of this tool 
is built into the binary folder for a specific platform. 

We use the built-in ‘audioop’ Python module to perform the actual data 
conversion from the source wave file into the Pleo-supported PCM or 
ADPCM format, at the specified bit-rate. 

It is recommended that the input wave files be uncompressed, mono, 
44kHz files. The output can be PCM or ADPCM, at various bit-rates – but 
we suggest keeping it to 11k or 22k. To specify the compression and 
data rate for all sound files in a project, use an <options/sound> element. 
For example: 

<options> 
    … 
    <sound adpcm=”true” rate=”11025” /> 
</options> 

You can also set these properties on individual files by adding these 
same attributes to a specific sound element in the resources element. For 
example: 

<resources> 
    … 
    <sound path=”${SOUNDS}/growl.wav” adpcm=”false” 
rate=”22050” /> 
    … 
</resources> 

This overrides any settings made in the <options/sound section>. 

Motion processing 

Motions are created at Ugobe using Autodesk 3ds Max Studio, and some 
custom export scripts to generate CSV file representations of Pleo 
motions (sometimes also referred to as animations). The freely available 
MySkit program can also be used to generate motions for Pleo. 

The build tool used to process motion CSV files into Ugobe Motion Files 
(UMF) is called csv2umf.py. In the binary tools release, the compiled 
version of this tool is built into the binary folder for a specific platform. 

The csv2umf tool takes the frame-based description of the motion, 
creates vectors for each joint that match this, and write it to a binary 
format (a .umf file). A motion is called out in the UPF like so: 

<resources> 
    … 



 

    <motion path="${MOTIONS}/bow.csv" /> 
    … 
</resources> 

This example would result in a motion resource with the name of 
mot_bow and an ID in the range of 0x2000 – 0x2FFFF. 

Additional processing options for motion files can be placed in the 
<options/motion> element. For example: 

<options> 
    … 
    <motion version=”3” /> 
    … 
</options> 

This example sets the UMF output version for all motions to version 3. 
This is not needed for Pleo 1.1, since this is the default – and only – 
version supported in Pleo. 

Command processing 

Commands are groups of sounds or motions, with associated property 
values or ranges, which are processed in the Pleo firmware. The firmware 
compares the properties in each command entry with the current 
property values in Pleo, and will choose a sound or motion out of the 
resulting set that matches the current state of Pleo. 

Commands are typically built by hand, either in a spreadsheet program 
like Excel, or directly in a text editor like Notepad. They are in a comma 
separated value (CSV) format. 

The build tool that processes Command CSV files is called csv2ucf.py. It 
takes as input the Command text file in CSV format and writes it to a 
Ugobe Command File (UCF). This UCF is then included in the final 
resource file (URF). 

Commands are called out in a UPF with a line like this: 

<resources> 
    … 
    <command path="${COMMANDS}/hunt.csv" /> 
    … 
</resources> 

Pawn script processing 

Pawn scripts provide the logic behind any Pleo application. They can be 
authored in a program as simple as Notepad, or a complete environment 
like Quincy – the IDE that is included with the CompuPhase Pawn 
distribution. 



 

The build tool that processes Pawn script is pawncc – the Pawn compiler. 
The version distributed by CompuPhase should work for build Pleo 
applications, if it is of a certain minimum version (3.3 at the time of this 
writing). 

But in order to ensure good builds, we have included the Pawn compiler 
that we have built and tested at Ugobe, and that we know matches the 
Pawn run-time built into Pleo. 

To specify a script in a UPF, use something like: 

<resources> 
    … 
    <script path="${SCRIPTS}/main.p" /> 
    … 
</resources> 

Each script specified in the UPF will be built using the command line as 
specified in the <options/tools/pawn> element. For example: 

<options> 
  <tools> 
    <pawn value="pawncc %i -V2048 -O2 -S64 -v2 -C- %I 
TARGET=100 -o%o" /> 
  </tools> 
</options> 

Notice there is no path specified to the pawncc executable. This is why 
the Pawn compiler either needs to be installed somewhere on the PATH, 
or the use of the provided build.bat and/or build.sh scripts need to be 
used. In this way the UPF is completely cross-platform, since it used the 
underlying Python functions for path handling, which works across 
platforms. 

For the example command line, we have the following options: 

• %i: this is a place holder for the input .p filename 
• -V2048: this turns on overlay generation, setting a maximum 

overlay size of 2048 bytes. 
• -O2: this turns on full optimization, which includes opcode 

packing, reducing the code size by about 35% on average 
• -S64: this sets the stack size, in cells 
• -v2: this sets the verbosity level of the compiler output. Useful 

to see more data about the scripts being built 
• -C-: this turns off compression of the code. Compression is 

NOT compatible with Pleo, since we cannot guarantee enough 
space for the code when it is compressed (it gets 
decompressed on load) 

• %I: this is a placeholder for the include path set in the 
<options/include> element 



 

• TARGET=100: this sets the target life form that this script is 
written for. Currently, we only have one life form. See 
pdk/include/default.inc for possible values 

• -o%o: this sets the output, with the %o representing the output 
location of the resultant AMX file. By default this will be in 
./temp/scripts/ 

 

 



 

Pleo Scripting 

The mid-level layer contains four different virtual machines, or VMs (referred to 
as an Abstract Machine in the Pawn documentation). It is important to 
understand how each one is designed and should be used. 

All VMs may contain the special functions init and close. The init function will be 
called when a script is first loaded into a VM, and the close function will be 
called just before a script is unloaded from a VM. 

Sensor VM 

The Sensor VM is used to handle all sensor activity. A special on_sensor 
function will be called when a sensor is 'triggered'. On startup, the Sensor 
VM will look for a script names sensors.amx. 

A sensor is triggered when it changes its state or value to enough that is 
considered interesting. For example, a touch sensor changes state when 
touched, and also when released. In this case, there will be a trigger at 
the time the sensor is touched, and again when the sensor is released.  

Another example might be the IR sensor, which will trigger when the IR 
module receives data from another Pleo or another device.  

The on_sensor function has the following signature: 

 bool: on_sensor(time, sensor_name: sensor, value); 

where: 

• time is the time at which the sensor was triggered, given in 
milliseconds since Pleo was powered on 

• sensor is the ID of the sensor. See sensor_name. 
• value is the new value of this sensor after the trigger 

If the on_sensor function returns true, then the sensor trigger will be reset. 
If the on_sensor function returns false, then the sensor trigger will not be 
reset, which means the on_sensor will be called again for this sensor 
trigger (though there may be other sensor triggers that occur first). 

See the Sensor section for details on each sensor. 

 



 

 

Main VM 

The main.amx script is designed to be the controlling script for a Pleo 
application. It should contain a main function, which will be called after 
any init function. This function is designed to run forever. If the main 
function returns, the native code will simply call the main function again. 

Behavior VM 

The Behavior – or Aux - VM is designed to load and run script 
dynamically. The native functions vm_exec and vm_exec_id will load and 
execute scripts in this VM by default. These scripts should contain a main 
function that will be called after any init function has finished executing. 

The main function in this script differs from the main script in that when 
the main function in the aux script finishes, it will not be called again. But 
it will set a property to indicate that the script has finished executing, 
allowing the main controlling script to call out another script if desired. 

After the main function returns, the close function will be called. 

If a script is loaded into the Aux VM, and a script is already running, the 
existing scripts close function will be called. When it completes, the new 
script will be loaded, its init function being called, if any. Then its main 
function will be called. 

User VM 

The User VM is used to execute the special init.amx script. This script is 
the first one looked for when Pleo starts or when an SD Card is inserted 
into Pleo.  

The init.amx can be loaded while a Pleo application is already running, 
allowing this script to perform operations independent of the running Pleo 
Application. 

Note: Pleo 1.1 changed the name of the startup script from 
‘init.amx’ to ‘startup.amx’.This allows the creation of one SD Card 
that can support the compiled Pawn format for both Pleo 1.0 
(Pawn 3.2) and Pleo 1.1 (Pawn 3.3). 

This script can also control the currently executing Pleo application; that 
is, it may unload the currently executing application or load a new 
application. 

Since unloading applications can adversely effect the operation of Pleo, 
only scripts signed by Ugobe can perform this operation. 



 

Scripting Limits 

The Pleo firmware has a very limited amount of memory, so it is important 
that scripts use only the minimum amount possible. This sections details 
how memory is allocated and used for Pawn scripting and some 
techniques that allow scripters to identify issues before they even run 
their applications. 

There are two memory components when dealing with Pawn scripts: 
code and data. Code is the generated Pawn opcodes from the Pawn .p 
source files. Data consists of the variables of a program, and also the 
stack for that script. 

The Pawn compiler compiles a Pawn .p source file and it generates an 
.AMX file, which can then be loaded into the Pleo firmware in one of the 
four available VMs. The layout of an AMX file is like so: 

• Header: 
• Code: 
• Data: 

The Pleo firmware reserves a section of memory called a code pool. It is 
currently 8K in size. This pool is shared among all of the Pawn VMs in the 
firmware. 

Each VM has reserved a block of memory for any scripts data and stack. 
The current limits are: 

• Sensor: 
• Main: 
• Behavior: 
• User:  

If any attempt to load a script that would not fit in these limits, the load 
will fail. See the log output with the log type ‘vm’ enabled. 

In order to catch these kinds of errors early, there are mechanisms in the 
Pawn compiler to check for these limits. This includes either pre-
processor directives or command-line options. We will detail both. 



 

Pleo API 

Every script loaded into any of the VMs has access to a set of functions 
exposed by the Pleo firmware. All of these functions are defined in the include 
files that are part of the PDK. 

In the include folder, you will find (at least) the following includes: 

Animation.inc: interface to control Animation System, or Motion 
Commands 

Application.inc: interface to control  application loading and unloading 

Joint.inc: interface to control individual joints 

Log.inc: interface to logging functions 

Motion.inc: interface to control motion playback 

Property.inc: interface to Property System, or Blackboard 

Resource.inc: interface to the Resource Manager 

Script.inc: interface to script VMs 

Sensor.inc: interface to sensor system 

Sound.inc: interface to control sound playback 

String.inc: interface to string functions 

Time.inc: interface to time functions 

Uti l. inc: interface to misc. utility functions like rand. 

Refer to the Pleo Reference Guide for more include file specifics. 

In the following sections, the ${sdk} mnemonic will indicate the location where 
the PDK has been installed. 

Joint System 

The joint API allows script to move joints, get joint positions, status, etc. 
There are multiple coordinate systems in the Pleo motion control system. 
At the highest level, we use angles in degrees, and at the lowest level we 
use voltage (VR) values. The script can use either system, but in most 
cases will use the default degree system. 



 

Here is the list of joint IDs, from ${sdk}/include/pleo/joints.h: 

enum joint_name { 
  JOINT_RIGHT_SHOULDER 
  JOINT_RIGHT_ELBOW 
  JOINT_LEFT_SHOULDER 
  JOINT_LEFT_ELBOW 
  JOINT_LEFT_HIP 
  JOINT_LEFT_KNEE 
  JOINT_RIGHT_HIP 
  JOINT_RIGHT_KNEE 
  JOINT_TORSO 
  JOINT_TAIL_HORIZONTAL 
  JOINT_TAIL_VERTICAL 
  JOINT_NECK_HORIZONTAL 
  JOINT_NECK_VERTICAL 
  JOINT_HEAD 
}; 

Each joint has a range of possible angle values, which can be retrieved 
using the following functions: 

joint_get_min(joint_name: joint, angle_type: type); 
joint_get_neutral(joint_name: joint, angle_type: type); 
joint_get_max(joint_name: joint, angle_type: type); 

The type parameter of type enumeration angle_type should be set to 
angle_degrees.   

The main joint movement function is: 

joint_move_to(joint_name: joint, value, speed, angle_type: 
type); 

The speed parameter for joint_move_to is in angle_type units per second. 

Joint information functions include: 

joint_get_attribute(joint_name: joint, joint_attribute: 
type); 
joint_get_position(joint_name: joint, angle_type: type); 
bool: joint_is_moving(joint_name: joint); 

The attributes of a given joint that can be retrieved include: 

enum joint_attribute { 
    ja_none,        // N/A 
    ja_status,      // RO 
    ja_position,    // RO 
    ja_pwm,         // RO 
    ja_load,        // RO 
    ja_speed,       // RO 
    ja_time,        // RO 
    ja_setpoint,    // RO 
    ja_deadband,    // RW 



 

    ja_threshold,   // RW 
}; 

Finally, control over whether script or motion files control a given joint can 
be specified using this: 

joint_control(joint_name: name, who); 

where who should be set to 0 so motion files control the joint, or 1 so that 
scripts can control the joint (for example, by using the joint_move_to() 
function). 

Motion System 

Rather than only control individual joint movements through script, which 
can be powerful but tedious to implement for complex animations, LifeOS 
also provides a motion file playback system.   

Motion files can be generated with a variety of tools (TBD).  A motion file 
is a binary file conforming to the Ugobe Motion File format (UMF), which 
consists of a header followed by one or more vectors.  Each vector 
consists of a joint name, a desired destination angle, and a desired time 
at which that angle should be reached. 

Motion files can be started playing using: 

Motion: motion_play(motion_name: name); 
Motion: motion_play_file(const file_name[]); 

where name is the name of a motion file specified in your project’s Ugobe 
Project File (UPF).  The project build system generates an enumerated 
value for each listed motion file with “mot_” prefixed to it, and stores 
them in motions.inc.  For example: 

/***************************************************\ 
 *                    WARNING                      * 
 *     This file was automatically generated by    * 
 * enumgen.py.  Do not edit directly or put under  * 
 *                source control.                  * 
\***************************************************/ 
enum motion_name { 
 mot_none       = 0, 
 mot_min        = 8192, 
 mot_my_motion  = 8192, 
 mot_max 
}; 

Alternatively, the motion_play_file() function can be passed the name of a 
file on the SD card, and would thus not need to be listed in your UPF.  
Note that you need to specify the base of the filename, excluding the 
‘.umf’ extension. 



 

Both of these functions return a handle to the motion file, which can be 
used in some of the functions described below.   

There is also a special handle value: 

Motion_Any = 0xAA 

This is useful when calling the motion_stop() function, to stop all motions. 

You can take control over a currently playing motion file using these 
functions: 

motion_pause({Motion, motion_name}: motion, bool: pause); 
motion_stop({Motion, motion_name}: motion); 
motion_set_playback_speed(percent_of_normal); 

The functions motion_pause() and motion_stop() can be passed either the 
handle returned by motion_play() or motion_play_file(), or can be passed 
the symbolic name of the motion defined in motions.inc.  

The function motion_set_playback_speed() will adjust the actual playback 
speed, normally 100 (percent).  This allows you to make Pleo look 
sluggish or peppy, for example.  Note that this setting will remain in effect 
until Pleo is reset or power cycled, so be sure to set it back to normal 
when appropriate. 

You can query the state of the motion system with these functions: 

bool: motion_is_playing({Motion, motion_name}: motion); 
motion_get_playback_speed(); 

The function motion_is_playing() can be passed a handle or a motion 
name, from which it will return true if the specified motion file is playing.  
Alternatively, if passed Motion_Any, it will return true if any motion file is 
playing, regardless of what file is playing 

Property System 

The property system serves three main functions: 

• communication between LifeOS and Pawn 
• communication between the different Pawn VMs  
• persistence across power cycles  

Properties used for communication between LifeOS and Pawn are 
defined by LifeOS and called system properties. Pawn developers can 
also define properties for use in their scripts, called user properties. The 
user properties need to be declared in the Ugobe Project File (upf), while 
system properties are defined in the properties.inc include file. Most 
system properties should be considered read-only, although this is not 



 

enforced. Changing the values of system properties in script can have 
unpredictable results. 

A property consists of a name and a value. The name is stored as an 
enumeration value and also referred to as the property id. The value of a 
property can range from  

-0x3FFFFFFF to 0x3FFFFFFF (-1,073,741,823 to 1,073,741,823).  

A total of 224 properties can be defined in LifeOS 1.1 

 
Currently, the following system properties are defined: 

  property_none: name used to specify no property 
   property_min: the number of the lowest defined 
property                  (useful for loops) 
  property_arousal: not used by LifeOS 
  property_valence: not used by LifeOS 
  property_stance: not used by LifeOS 
  property_age: not used by LifeOS 
  property_damage: not used by LifeOS 
  property_energy: not used by LifeOS 
  property_health: not used by LifeOS 
  property_mood: not used by LifeOS 
  property_command: currently active command 
  property_command_status: current command status 
  (per command_status_enum) 
  property_layer: current layer of the current animation  
  property_probability: not used by LifeOS 
  property_motion: currently active motion  
  property_command_pending: currently pending command (if 
any) 
  property_behavior_status: current behavior vm status  
  (per command_status_enum) 
  property_script_status: alias for 
property_behavior_status  
  property_fatigue: not used by LifeOS 
  property_direction: not used by LifeOS 
  property_pose: not used by LifeOS 
  property_sequence: not used by LifeOS 
  property_platform: the platform LifeOS is executing on. 
Pleo=4 
  property_behavior: the currently active behavior 
  property_script: alias for property_behavior 
  property_speed: not used by LifeOS 
  property_neutral: not used by LifeOS 
  property_pickedup: not used by LifeOS 
  property_stand: not used by LifeOS 
  property_liedown: not used by LifeOS 
  property_trick_step: not used by LifeOS 
  property_trick_id: not used by LifeOS 
  property_sound: currently active sound 
  property_drive: currently active drive 
  property_motion_time: time left for this motion (in ms) 



 

  property_attn_track_weight: minimum size of an object to 
be tracked 
  property_attn_hold_flags: bitmask representing which 
touch sensors 
  are held 
  property_cam_img_progress: current status of the camera 
system  
  property_attn_track_mindist: minimum distance an object 
must move 
  before a tracking event is generated 
  property_attn_track_move: allow LifeOS to move the neck 
for  
  tracking (0 or 1) 
  property_attn_p2p_timeout: time after which pleo 
considers  
  a p2p conversation abandoned  
  property_max: one higher than the last system property  
  (useful for loops) 
  property_limit: maximum value of a property name (65535) 
 

The value of a property can be set and retrieved by the native functions 
get_property and set_property respectively. For brevity, set and get 
aliases have been defined. 

Persistence 

The property system provides persistence by allowing properties to 
be saved to a file on either dataflash or SD card to be loaded at a 
later time. There is no option to selectively save or load properties; 
all properties are saved and all existing properties are replaced on 
load. 

Leaky Integrators 

The property system provides a mechanism to have property 
values change over time without having to explicitly update their 
values, by using Leaky Integrators. A leaky integrator can be 
specified with the native function property_set_leak. A leaky 
integrator has a delta and an interval allowing flexibility in how 
much a property will increment or decrement as well as how often 
this happens. A maximum and minimum can also be set. 32 Leaky 
integrators can be defined in LifeOS 1.1 

Reporters 

To be notified when a property crosses a threshold or changes by 
a certain amount, the property system provides the Reporter 
mechanism. This is primarily useful if you wish to receive 
notification when system properties are updated, or when a 
property modified by a leaky integrator reaches a specific value. 
LifeOS notifies the sensor VM of these events by calling into 



 

on_property, if defined. Reporters are set by calling the 
add_reporter native. LifeOS 1.1 supports up to four reporters. 

Drive system 

Like every life form, Pleo's actions are controlled by a number of 
competing drives. These drives control Pleo's behavior at the highest 
level; examples are hunger, fatigue and being social, but the developer 
can define arbitrary drives making Pleo into a thrill seeker or always in 
need of light, etc. 

Every drive has a value, and the drive with the highest value is the one 
that wins and becomes active, meaning it is now in control of Pleo's 
actions. 

Adding Drives 

Adding drives happens from script using the drive_add function, 
which takes two trigger values aside from the drive name and the 
evaluation interval. 

The trigger values dictate when pleo will actively try to work to: 

 - bring the drive evaluation down (eval > high trigger),  
 - maintain the current level (low trigger < eval < high trigger) 
 - bring the drive evaluation up (eval < low trigger) 

'eval' is the value returned from the Drive Evaluators. Every Drive 
must have a drive evaluator defined in the Main VM, by the name 
of  <DriveName>_eval(). If a drive is added to control Pleo's 
nutritional needs called 'hunger', an evaluator called hunger_eval 
must exist. A drive evaluator can be very simple and return the 
value of a single variable, or can be a complex function taking into 
account many factors regarding Pleo's internal state as well as the 
environment. Calling drive_set_value can also explicitly set drive 
evaluation values. 

When a drive is first added, a call into its init function is made. For 
the example of the hunger drive, this would be hunger_init(). When 
the drive system is unloaded, hunger_exit() is called for any 
cleanup. When the active drive is switched from one drive to 
another, the respective deactivate and activate functions are 
called. For our 'hunger' drive example these functions would be 
called hunger_activate() and hunger_deactivate(). 

 



 

Behaviors 

Once a drive is the winner and in control of the system, it can 
exercise this control by picking a new behavior. A behavior is a 
separate script running in the behavior VM. Every drive is 
associated with one or more behaviors. Behaviors are added by 
calling the behavior_add function. Like drives, behaviors have 
evaluation functions. Because behaviors have IDs rather than 
names, all behaviors for a drive have the same evaluator function. 
For the hunger example, this would be hunger_behavior_eval(), 
which passes the behavior ID for the behavior to be evaluated. Like 
drives, the behavior evaluation value can also be explicitly set from 
any part of the system by calling behavior_set_value. 

Example: 

public hunger_behavior_eval(behavior_id) 
{ 
  switch(behavior_id) 
  {    
   case scr_eat_grass: 
   { 
    if 
(get(property_grass_available) == 1) 
    { 
     return 50; 
    } 
    return -50; 
   } 
   default: 
   { 
    return 0; 
   } 
  } 
} 

which will return 50 for the eat_grass behavior if there is grass, but 
-50 if there is no grass. For any other behavior evaluation it will 
return 0, such that they will lose from eat_grass when grass is 
around, but win from eat_grass when there is no grass. This 
function can easily be extended for more complicated 
circumstances for the other hunger-related behaviors (look for 
food, or beg for it), as well as additional complexity for eat_grass 
(whether or not Pleo has eaten anything but grass in the last 3 days 
may affect his desire to eat more of it, for example). 



 

 

The eat_grass behavior script can now be written and added to the 
Ugobe Project File: 

 <resources> 
 
     ...  
  <script path="${SCRIPTS}/eat_grass.p" /> 
 </resources> 
 

Behavior scripts are very similar to the main.p script, in that they 
have three public funtions: init(), main() and close(). Unlike the 
main.p script, the main function of a behavior script is called only 
once. To prevent Pleo from having nothing to do, it is 
recommended to have a main() function that does not terminate by 
itself. When LifeOS activates a new behavior, the current one is 
interrupted, close() is called and the next behavior is loaded. 

Sensors System 

Each sensor in Pleo has a unique identifier, rules about when it is 
triggered, and different ranges of values that it may have. In this section 
we detail each sensor. 

There are two types of sensors in Pleo: ‘raw’ and ‘derived’ sensors. Raw 
sensors are those sensors that are associated directly with a hardware 
sensor. For example, battery level, touch sensors, etc. Derived sensors 
are ‘virtual’ sensors, which use a combination of the raw sensors and 
other information. These include picked up, abused, etc. 

Raw sensors 

The following is a list of all the sensors in Pleo, taken from the 
${pdk}/include/pleo/sensors.inc include file: 

enum sensor_name { 
  SENSOR_BATTERY 
  SENSOR_IR 
  SENSOR_HEAD 
  SENSOR_CHIN 
  SENSOR_BACK 
  SENSOR_LEFT_LEG 
  SENSOR_RIGHT_LEG 
  SENSOR_LEFT_ARM 
  SENSOR_RIGHT_ARM 
  SENSOR_TAIL 
  SENSOR_FRONT_LEFT 
  SENSOR_FRONT_RIGHT 
  SENSOR_BACK_LEFT 
  SENSOR_BACK_RIGHT 
  SENSOR_CARD_DETECT 



 

  SENSOR_WRITE_PROTECT 
  SENSOR_LIGHT 
  SENSOR_OBJECT 
  SENSOR_MOUTH 
  SENSOR_SOUND_DIR 
  SENSOR_LIGHT_CHANGE 
  SENSOR_SOUND_LOUD 
  SENSOR_TILT 
  SENSOR_TERMINAL 
  SENSOR_USB_DETECT 
  SENSOR_WAKEUP 
  SENSOR_BATTERY_TEMP 
  SENSOR_SHAKE 
  SENSOR_SOUND_LOUD_CHANGE 
  SENSOR_BEACON 
  SENSOR_BATTERY_CURRENT 
  SENSOR_PACKET 
  SENSOR_EDGE_IN_FRONT 
  SENSOR_EDGE_ON_LEFT 
  SENSOR_EDGE_ON_RIGHT 
  SENSOR_OBJECT_IN_FRONT 
  SENSOR_OBJECT_ON_LEFT 
  SENSOR_OBJECT_ON_RIGHT 
  SENSOR_TOUCH_TAP  
  SENSOR_TOUCH_HOLD 
  SENSOR_TOUCH_RELEASE 
  SENSOR_TOUCH_PETTED 
  SENSOR_ABUSE 
  SENSOR_PICKED_UP  
  SENSOR_TRACKABLE_OBJECT 
  SENSOR_EDGE   
  SENSOR_TOUCH_TAP_HOLD 
  SENSOR_JOINT_STUCK 
  SENSOR_JOINT_UNSTUCK 
  SENSOR_TIMER 
  SENSOR_MSG_RECEIVED 
  SENSOR_MSG_GONE 
  SENSOR_PLOG 
}; 

Sensor values can be read with the following functions: 

sensor_get_value(sensor_name: sensor); 

for scalar values, or: 

sensor_read_data(sensor_name: sensor, data[], length = 
sizeof data); 

to read an array of data for those sensors that deal with data arrays 
(IR, camera, terminal, or sound for example). 
 



 

SENSOR_BATTERY 

Sensor ID: 2 

Value range: 0 – 100 

Trigger condition: incremental change (by 25) 

Description: The SENSOR_BATTERY is used to read the current 
level of the battery. It is normalized to a value range of 0-100, 
where 100 is full-charge, 50 is half-charge and 0 is no charge. 

There are two critical battery levels that have special meaning: 

o The first special battery level indicates when the battery is low 
enough to prohibit motions that take a lot of power from 
playing.  

o The second special battery level is when Pleo ought to go to 
sleep because he cannot play any motions. This is when Pleo 
should enter the sleep pose, turn off unneeded peripherals – 
including motors – and wait to be charged. 

o Pleo’s firmware will automatically shutdown when the 
SENSOR_BATTERY value goes below 11.  If you are 
running Pleo’s default personality, it will animate Pleo 
to a sleeping position and shutdown when the value 
goes below 23. 

SENSOR_IR 

Sensor ID: 3 

Value range: 0 – 64 

Trigger condition: any received data 

Description: The SENSOR_IR is used to indicate reception of 
valid NEC-format IR data that does not match the beacon or object 
detection codes; this can be from the use of the general purpose 
IR data mechanism in Pleo, or from the use of an NEC-format 
remote control. 
 
The value of the sensor is the number of lines of data in the IR 
receive buffer, where a line is defined to be a sequence of one or 
more characters delimited by an ASCII linefeed or NULL character.  
If the IR data comes from an NEC-format remote control, the line 
will be the 4 digit hex string representing the key pressed. 



 

 
SENSOR_HEAD 

Sensor ID: 6 

Value range: 0, 1 

Trigger condition: change to state of touch sensor (touched or 
released) 

Description: The SENSOR_HEAD reflects the state of the touch 
sensor under the skin of Pleo’s head. 

 
SENSOR_CHIN 

Sensor ID: 7 

Value range: 0, 1 

Trigger condition: change to state of touch sensor (touched or 
released) 

Description: The SENSOR_CHIN reflects the state of the touch 
sensor under the skin on Pleo’s chin. 

 
SENSOR_BACK 

Sensor ID: 8 

Value range: 0, 1 

Trigger condition: change to state of touch sensor (touched or 
released) 

Description: The SENSOR_BACK reflects the state of the touch 
sensor under the skin of Pleo’s back, near the neck. 

 
 



 

 

SENSOR_LEFT_LEG 

Sensor ID: 9 

Value range: 0, 1 

Trigger condition: change to state of touch sensor (touched or 
released) 

Description: The SENSOR_LEFT_LEG reflects the state of the 
touch sensor under the skin on Pleo’s left leg. 

 
SENSOR_RIGHT_LEG 

Sensor ID: 10 

Value range: 0, 1 

Trigger condition: change to state of touch sensor (touched or 
released) 

Description: The SENSOR_RIGHT_LEG reflects the state of the 
touch sensor under the skin of Pleo’s right leg. 

 
SENSOR_LEFT_ARM 

Sensor ID: 11 

Value range: 0, 1 

Trigger condition: change to state of touch sensor (touched or 
released) 

Description: The SENSOR_LEFT_ARM reflects the state of the 
touch sensor under the skin of Pleo’s left arm. 

 
 



 

 

SENSOR_RIGHT_ARM 

Sensor ID: 12 

Value range: 0, 1 

Trigger condition: change to state of touch sensor (touched or 
released) 

Description: The SENSOR_RIGHT_ARM reflects the state of the 
touch sensor under the skin of Pleo’s right arm. 

SENSOR_TAIL 

Sensor ID: 13 

Value range: 0, 1 

Trigger condition: change to state of touch sensor (touched or 
released) 

Description: The SENSOR_TAIL reflects the state of the touch 
sensor under the skin near Pleo’s tail, on it’s torso, not actually on 
it’s tail as the name implies. 

SENSOR_FRONT_LEFT 

Sensor ID: 14 

Value range: 0, 1 

Trigger condition: change to state of foot switch (touching surface / 
not touching) 

Description: The SENSOR_FRONT_LEFT reflects the state of the 
foot switch on the bottom of Pleo’s front left foot. 

 
 



 

 

SENSOR_FRONT_RIGHT 

Sensor ID: 15 

Value range: 0, 1 

Trigger condition: change to state of foot switch (touching surface / 
not touching) 

Description: The SENSOR_FRONT_RIGHT reflects the state of 
the foot switch on the bottom of Pleo’s front right foot. 

 
SENSOR_BACK_LEFT 

Sensor ID: 16 

Value range: 0, 1 

Trigger condition: change to state of foot switch (touching surface / 
not touching) 

Description: The SENSOR_BACK_LEFT reflects the state of the 
foot switch on the bottom of Pleo’s back left foot. 

 
SENSOR_BACK_RIGHT 

Sensor ID: 17 

Value range: 0, 1 

Trigger condition: change to state of foot switch (touching surface / 
not touching) 

Description: The SENSOR_BACK_RIGHT reflects the state of the 
foot switch on the bottom of Pleo’s back right foot. 

 
 



 

 

SENSOR_CARD_DETECT 

Sensor ID: 18 

Value range: 0, 1 

Trigger condition: change to state of SD card insertion – inserted = 
1, removed = 0 

Description: The SENSOR_CARD_DETECT indicates the state of 
the SD card slot; 1 = a card is inserted, 0 = no card is present. 

 
SENSOR_WRITE_PROTECT 

Sensor ID: 19 

Value range: 0, 1 

Trigger condition: change to state of write protect (which occurs on 
card insertion / removal) 

Description: The SENSOR_WRITE_PROTECT reflects the state of 
the write protect switch on the inserted SD card. 

SENSOR_LIGHT 

Sensor ID: 21 

Value range: 0-255 

Trigger condition: Triggers when the value crosses, in either 
direction, values of 30 and 150. 

Description: The SENSOR_LIGHT indicates the current absolute 
ambient light level seen by Pleo’s camera module in its snout.  
Lower values indicate a darker environment. 



 

 

SENSOR_OBJECT 

Sensor ID: 23 

Value range: 0-100 

Trigger condition: Triggers when the value crosses, in either 
direction, the values of 10 and 40. 

Description: The SENSOR_OBJECT value indicates the 
confidence that an object is in front of Pleo.  A value of 100 
indicates there is definitely something there; a value of 0 indicates 
that nothing is there.  The trigger occurs when it is likely, in normal 
environments, that either an object has just appeared in front of 
Pleo or has just disappeared.  Note that the value is not a 
measurement of distance, as it depends to a significant amount on 
the reflectivity and texture of the object in question, as well as, to a 
lesser degree, the amount of ambient IR light signals. 

SENSOR_MOUTH 

Sensor ID: 24 

Value range: 0, 1 

Trigger condition: change to state of the mouth IR interrupter. 

Description: The SENSOR_MOUTH indicates the presence or 
absence of an IR-opaque object in Pleo’s mouth: for example, 
Pleo’s leaf. 



 

 

SENSOR_SOUND_DIR 

Sensor ID: 26 

Value range: -90 to +90, or -128 

Trigger condition: triggers when change of direction of sound is 
detected 

Description: The SENSOR_SOUND_DIR triggers when an 
unambiguously measurable sound source is detected; the direction 
in degrees relative to Pleo is returned as the value (-90 is to the left, 
0 is straight ahead, +90 is to the right).  If loud sound is detected 
but its direction cannot be determined, the value will change to         
-128. 

Pleo’s sound direction sensor works best with relatively long 
sounds, such as spoken words, rather than claps or finger snaps. 

SENSOR_LIGHT_CHANGE 

Sensor ID: 27 

Value range: -127 to +127 

Trigger condition: triggers when the value changes to being greater 
than +30 (it has become brighter) or less than -30 (it has become 
darker) 

Description: The SENSOR_LIGHT_CHANGE detects relative 
changes to the current ambient light level. 

SENSOR_SOUND_LOUD 

Sensor ID: 28 

Value range: 0 to 100 

Trigger condition: triggers when loudness goes from < 30 to > 40, 
or > 40 to < 30 

Description: The SENSOR_SOUND_LOUD detects the edges of 
loud sounds that stand out from the background sound level. 



 

 

SENSOR_TILT 

Sensor ID: 29 

Value range: 0 to 6 (see enum tilt_name in sensors.inc) 

Trigger condition: triggers when the tilt sensor transitions to a new 
position 

Description: The SENSOR_TILT detects the orientation of Pleo’s 
torso in 3-space (independent of the angular position of Pleo’s 
neck).  Values returned are: 

• TILT_NONE = 0 – no orientation known 

• TILT_ON_FEET = 1 – feet are oriented downwards with 
respect to torso; does not mean that the foot switches are 
depressed – Pleo could be being held up in the air 

• TILT_LEFT_SIDE = 2 – on left side 

• TILT_RIGHT_SIDE = 3 – on right side 

• TILT_ON_NOSE = 4 – front of torso is pointed downwards 

• TILT_ON_TAIL = 5 – aft-end of torso is pointed downwards 

• TILT_ON_BACK = 6 – feet are pointed upwards with respect 
to torso 

 
SENSOR_TERMINAL 

Sensor ID: 30 

Value range: 0 to 64 

Trigger condition: triggers when the user types one or more 
character on the monitor interface, including just a carriage return 

Description: The SENSOR_TERMINAL triggers when a line has 
been entered; the value of the sensor is the number of characters 
received.  Use the sensor_read_data() function to retrieve the 
characters in your script. 



 

SENSOR_USB_DETECT 

Sensor ID: 32 

Value range: 0, 1 

Trigger condition: triggers when a valid USB connection to the host 
is established or when a connection is removed 

Description: The SENSOR_USB_DETECT reflects the state of the 
USB system. 

SENSOR_WAKEUP 

Sensor ID: 33 

Value range: 0, 1 

Trigger condition: triggers when the user depresses or releases the 
wakeup button, located near the SD card slot and USB connector 
on Pleo’s belly 

Description: The SENSOR_WAKEUP can be used in script for 
any purpose.  When running Pleo’s default personality, the wakeup 
button is used to adjust Pleo’s sound volume. 

SENSOR_BATTERY_TEMP 

Sensor ID: 34 

Value range: 0 to 100 

Trigger condition: triggers when the value, which is Pleo’s battery 
temperature in degrees C, crosses the values of 51 and 55 

Description: The SENSOR_BATTERY_TEMP is used to monitor 
the state of Pleo’s battery; very heavy use of animation, especially 
when the ambient room temperature is high, can result in 
overheating of the battery; Pleo’s firmware will automatically 
shutdown the system when the battery temperature reaches 58 C.  
You may choose to reduce activity when the 
SENSOR_BATTERY_TEMP triggers, in order to avoid further 
heating that may lead to such a shutdown. 



 

 

SENSOR_SHAKE 

Sensor ID: 36 

Value range: 0 to 255 

Trigger condition: triggers when the shake frequency goes from 
below 75 to above 150 or vice versa. 

Description: The SENSOR_SHAKE is used to detect Pleo being 
shaken, for example, while sleeping. 

SENSOR_SOUND_LOUD_CHANGE 

Sensor ID: 37 

Value range: -127 to +127 

Trigger condition: triggers when a large dynamic change in 
ambient noise level occurs 

Description: The SENSOR_SOUND_LOUD_CHANGE is used to 
detect large, interesting changes in the ambient noise level.  The 
long-term average noise level is monitored.  This sensor’s value is 
the difference between the short-term noise level and the long 
term. 



 

 

SENSOR_BEACON 

Sensor ID: 38 

Value range: 0 to 255 

Trigger condition: triggers when a beacon is received from another 
Pleo 

Description: The SENSOR_BEACON occurs when one Pleo 
receives a valid beacon from another Pleo; the value of the sensor 
is the lower 8 bits of that Pleo’s electronic serial number, which the 
beacon system uses as a semi-unique identifier. 

You can read the one byte unique identifier plus 3 bytes of user-
defined payload using the sensor_read_data() function.  Note that if 
you set the length parameter of the sensor_read_data() function to 
1 rather than 4, the data byte you read back will be this Pleo’s own 
id rather than the other Pleo’s. 

You can write (modify) the outgoing beacon payload using the 
sensor_write_data() function.  By setting the length parameter to 0, 
you can turn off the beacon system.  Otherwise, the up to 3 data 
bytes you pass in will be broadcast approximately every 2 seconds 
from this Pleo over IR using the NEC consumer remote control 
protocol.  

SENSOR_BATTERY_CURRENT 

Sensor ID: 39 

Value range: 0 to 5000 

Trigger condition: none 

Description: The SENSOR_BATTERY_CURRENT returns the 
number of milliamps being consumed from the battery by all 
electronics, including motors, in Pleo. 



 

 

SENSOR_PACKET 

Sensor ID: 40 

Value range: 0 to 400 

Trigger condition: triggers when a matching packet (according to 
the current packet filter criteria) is received from the NXP head 
processor by the main ARM processor 

Description: The SENSOR_PACKET gives script programmers 
direct access to data received from the head processor.  See the 
Packet System section for more details. 

SENSOR_EDGE_IN_FRONT 

Sensor ID: 101 

Value range: 0, 1 

Trigger condition: triggers when edge detected or lost 

Description: The SENSOR_EDGE_IN_FRONT outputs 1 when an 
edge (of a table, for example) is detected in front of Pleo; it outputs 
0 when the edge disappears.  Pleo’s firmware does this 
automatically whenever the object detect sensor is enabled (which 
it is by default), and the neck is straight and pointing downwards at 
a predefined angle.  The angle limits can be changed using 
set_object_edge_params(). 

SENSOR_EDGE_ON_LEFT 

Sensor ID: 102 

Value range: 0, 1 

Trigger condition: triggers when edge detected or lost 

Description: The SENSOR_EDGE_ON_LEFT works in a similar 
manner to SENSOR_EDGE_IN_FRONT, except that it occurs when 
the neck is turned to Pleo’s left. 



 

 

SENSOR_EDGE_ON_RIGHT 

Sensor ID: 103 

Value range: 0, 1 

Trigger condition: triggers when an edge is detected or lost 

Description: The SENSOR_EDGE_ON_RIGHT works in a similar 
manner to SENSOR_EDGE_IN_FRONT, except that it occurs when 
the neck is turned to Pleo’s right. 

SENSOR_OBJECT_IN_FRONT 

Sensor ID: 104 

Value range: 0, 1 

Trigger condition: triggers when an object is detected or lost 

Description: The SENSOR_OBJECT_IN_FRONT works in a 
similar manner to SENSOR_EDGE_IN_FRONT, except that it only 
occurs when the neck is straight and pointed above a predefined 
angle; this use of neck vertical angle automatically distinguishes 
between flat walking surfaces and obstacles or walls. 

SENSOR_OBJECT_ON_LEFT 

Sensor ID: 105 

Value range: 0, 1 

Trigger condition: triggers when an object is detected or lost 

Description: The SENSOR_OBJECT_ON_LEFT is similar to 
SENSOR_OBJECT_IN_FRONT except that it only occurs when the 
neck is pointed to Pleo’s left side by a predefined angle. 



 

 

SENSOR_OBJECT_ON_RIGHT 

Sensor ID: 106 

Value range: 0, 1 

Trigger condition: triggers when an object is detected or lost 

Description: The SENSOR_OBJECT_ON_RIGHT is similar to 
SENSOR_OBJECT_IN_FRONT except that it only occurs when the 
neck is pointed to Pleo’s right side by a predefined angle. 

SENSOR_TOUCH_TAP 

Sensor ID: 107 

Value range: sensor_id of the touch sensor involved 

Trigger condition: triggers when touch sensor has been touched 
and released 

Description: The SENSOR_TOUCH_TAP triggers when a touch 
sensor has been touched and released after a short period of time; 
the value of the sensor returned is the ID of the touch sensor that 
was tapped. 

SENSOR_TOUCH_HOLD 

Sensor ID: 108 

Value range: sensor_id of the touch sensor involved 

Trigger condition: triggers when held for a sufficient period of time 

Description: The SENSOR_TOUCH_HOLD is similar to 
SENSOR_TOUCH_TAP, except that it distinguishes for you the 
difference between a short tap vs. a longer hold. 



 

 

SENSOR_TOUCH_RELEASE 

Sensor ID: 109 

Value range: sensor_id of the touch sensor involved 

Trigger condition: triggers when touch sensor, which was being 
held, has been released 

Description: The SENSOR_TOUCH_RELEASE follows a 
corresponding SENSOR_TOUCH_HOLD. 

SENSOR_TOUCH_PETTED 

Sensor ID: 110 

Value range: enum petted_name 

Trigger condition: triggers when petting has been detected 

Description: The SENSOR_TOUCH_PETTED detects when a 
series of one or more touch sensors are triggered, indicating that 
the user is petting Pleo.  The value of the sensor indicates in what 
manner the pet is occurring, or that it has stopped. 

 
enum petted_name  { 
   PETTED_NONE            =  0, 
   PETTED_MIN             =  1, 
   PETTED_STOPPED         =  1, 
   PETTED_BACKARSE        =  2, 
   PETTED_ARSEBACK        =  3, 
   PETTED_HEADBACK        =  4, 
   PETTED_BACKHEAD        =  5, 
   PETTED_HEADBACKARSE    =  6, 
   PETTED_ARSEBACKHEAD    =  7, 
   PETTED_MAX 
}; 



 

 

SENSOR_ABUSE 

Sensor ID: 111 

Value range: 0, 1 

Trigger condition: triggers when abuse starts or concludes 

Description: The SENSOR_ABUSE detects when Pleo’s joints are 
being moved by some external force (e.g., the user has grabbed 
Pleo by a leg and is moving it back and forth). 

SENSOR_PICKED_UP 

Sensor ID: 112 

Value range: 0, 1 

Trigger condition: triggers when Pleo is either picked up or put 
down 

Description: The SENSOR_PICKED_UP sensor detects when 
Pleo is set down on or lifted up from a surface. 

SENSOR_TRACKABLE_OBJECT 

Sensor ID: 113 

Value range: 0-9 

Trigger condition: triggers when a matching object is found or lost 

Description: The SENSOR_TRACKABLE_OBJECT detects the 
location of an object that matches the current colormap, and also 
detects when such an object goes away.  If the value is 0, the 
object is gone; if the value is 1-9, it indicates the direction in Pleo’s 
field of view that the object is detected; the numbering system is 
oriented like a keypad.  



 

 

SENSOR_EDGE 

Sensor ID: 119 

Value range: none 

Trigger condition: none 

Description: The SENSOR_EDGE is a bundle sensor used to 
enable/disable all sensors related to edge detection. 

SENSOR_TOUCH_TAP_HOLD 

Sensor ID: 120 

Value range: none 

Trigger condition: none 

Description: The SENSOR_TOUCH_TAP_HOLD is a bundle 
sensor used to enable/disable all touch-related sensors. 

SENSOR_TIMER 

Sensor ID: 124 

Value range: 0..65535 

Trigger condition: periodically triggers when timer expires 

Description: The SENSOR_TIMER triggers every time the timer 
expires; the value is the amount of time that has passed since the 
last trigger.   The native function set_timer_interval() can be used to 
set the number of milliseconds for the trigger period. 

SENSOR_MSG_RECEIVED 

Sensor ID: 125 

Value range: 0..255 

Trigger condition: triggers when a new Pleo’s beacon has been 
received 

Description: The SENSOR_MSG_RECEIVED is triggered when a 
new Pleo has been detected by means of its IR beacon.  The value 
returned is the 8 bit Pleo ID of the Pleo that transmitted the 
beacon.  See also SENSOR_BEACON and SENSOR_MSG_GONE. 



 

SENSOR_MSG_GONE 

Sensor ID: 126 

Value range: 0..255 

Trigger condition: triggers when a timeout occurs 

Description: The SENSOR_MSG_GONE triggers when contact 
has been lost with a Pleo that was previously detected.  The value 
is the 8 bit Pleo ID of the lost Pleo.  See also 
SENSOR_MSG_RECEIVED and SENSOR_BEACON. 

SENSOR_PLOG 

Sensor ID: 128 

Value range: none 

Trigger condition: none 

Description: The SENSOR_PLOG is a virtual sensor used to 
enable or disable the Pleo Log (plog). 

Sound System 

LifeOS provides the ability to play back sounds in a variety of ways: 

Referenced from a motion file 

Referenced in a sound command file 

Directly from script 

Just as in the Motion System, many Sound System functions return or 
accept as parameters a Sound file handle, or a special value representing 
any sound file – Sound_Any.   

Some functions can accept a file name (minus the .usf extension), or a 
sound file enumeration consisting of “snd_” prefixed to the root of the 
source sound  file name, and listed automatically in sounds.inc.  For 
example: 

/***************************************************\ 
 *                    WARNING                      * 
 *     This file was automatically generated by    * 
 * enumgen.py.  Do not edit directly or put under  * 
 *                source control.                  * 
\***************************************************/ 
 
enum sound_name { 
  snd_none               =     0, 
  snd_min                =  4096, 



 

  snd_yawn               =  4096, 
  snd_max 
}; 

Functions to start playing a sound include: 

Sound: sound_play(sound_name: sound, bool: interrupt = 
false); 
Sound: sound_play_file(const string[]); 
 
sound_command(command_name: name, bool: interrupt = false); 

The difference between these functions is whether to play a sound by 
symbolic name or file name.  The special function sound_command() will 
start the named lookup table, which is used by the system to randomly 
select and play one of many sound files. 

To stop a specific sound, call the following function with the name of the 
sound file enumeration or the handle returned by one of the play 
functions, or Sound_Any to stop any currently playing sound: 

bool: sound_stop({Sound,sound_name}: sound = Sound_Any); 

To check whether a specific sound file, or any sound file, is playing, use 
this: 

bool: sound_is_playing({Sound,sound_name}: sound = 
Sound_Any); 

The loudness of sound playback can be adjusted between 10% and 
200% using the sound_set_volume() function; the current volume can of 
course be queried.  100% is the normal playback volume. 

sound_get_volume(); 
sound_set_volume(volume); 

The playback speed can also be modified, over a range of 25% to 200%, 
where 100% is normal playback speed. 

sound_get_speed(); 
sound_set_speed(speed); 

Pleo-to-Host Connectivity 

When programming Pleo, it is most convenient to connect Pleo 
directly to a development machine. This can be done through the 
serial port or the USB port. In order to test applications, it is also 
necessary to use SD Cards. 

See the Pleo Monitor documentation for more details on the 
possible connectivity options available. 



 

Packet System 

Introduction 

Pleo includes two ARM7 processors: the main Atmel 
AT91SAM7S256 in the body of Pleo, and an NXP LPC2103 in the 
head. They are connected through a UART interface. The 
communications protocol between them is a packet-based system, 
the underlying transport being based on RFC 1662. 

In Pleo software versions 1.0.x there is a mechanism to send 
packets from Pawn – executing on the Atmel - to the NXP. But 
there is no mechanism to receive packets from the NXP in Pawn. 

This document describes an extension available in the Pleo 1.1.x 
software that allows the sending and receiving of packets to and 
from the NXP. 

Background 

The NXP in Pleo handles the following components: 

o Audio input, including loudness, direction detection and raw 
audio data capture. 

o Camera interface, including light levels, color tracking and raw 
image data capture. 

o IR interface, including object detection, IR 'beacon' and generic 
IR communications. 

o Mouth IR interrupter, which detects when something is in his 
mouth. 

o Serial RAM interface, which allows storing and retrieving 
information to the SRAM in the head. 

o Head and Chin capacitive touch sensors. 

The packet system between the NXP and Atmel is designed to be 
as concise as possible, but still be recognizable to humans, so we 
use alpha characters as packet designators. The following packet 
types are defined: 

o 'a': audio 
o 'c': camera 
o 'e': echo 
o 'i': IR 
o 'l': log 
o 'm': mouth IR 
o 'p': packet statistics 
o 's': serial ram 
o 't': touch sensors 



 

o 'v': version string 
o 'x': error string 

These codes are used in both directions. For example, to disable 
the camera system, you send the packet “cd”, where the 'c' 
represents the Camera module, and 'd' represents disable. 

Pleo 1.0.x 

Sending 

In the Pleo 1.0.x software release, you can send arbitrary 
packets from the Pleo Monitor, using the 'pkt send' 
command. For example, you can perform the following 
command: 

> pkt send ? 

and you will receive (assuming you have enabled the NXP 
log type via a 'log enable nxp') output similar to the 
following: 

> INFO: nxp: 7361 - Nov 15 2007 21:34:25 

From Pawn script you can use the function monitor_exec 
(see Util.inc) to perform any monitor command. Note that 
access rights are in effect, so you may need to first execute 
an 'access' command to gain access to the monitor 
commands you wish to execute. 

For example, in your Pawn script, you can do the following: 

monitor_exec(“pkt send ?”); 

If you have a terminal program connected to Pleo, you will 
see the same output as the example above that was done 
directly from the monitor. 

Receiving 

This feature is useful if you wish to set parameters of 
components on the NXP, but you cannot receive packets 
from the NXP in Pleo 1.0. 

Pleo 1.1.x 

In Pleo 1.1.x we have added a new 'virtual' sensor named 
SENSOR_PACKET. This sensor can be associated with any of the 
packet types listed above.  



 

Sending 

In Pleo 1.1.x, the same method is used for sending data to 
the NXP as described above for Pleo 1.0. 

There is also an new alternate method to send packets to 
the NXP. Instead of using the monitor_exec call, you can 
now build your own packets in a buffer, and send them to 
the head using the generic sensor_write_data function. For 
example, to get the version string back from the NXP, you 
can do the following: 

sensor_write_data(SENSOR_PACKET, “?”); 

This will send the buffer passed as-is directly to the packet 
system.  

NOTE: If this is an unrecognized packet, an error packet ('x') will 
be returned. So it may be useful to always filter the error packet to 
catch any errors you may be producing. 

Receiving 

When one of these NXP packets is received by the low-level 
firmware, the data associated with it will be stored in a 
special area of memory, and the SENSOR_PACKET sensor 
triggered, resulting in a call to the sensors on_sensor 
function, if any. 

For example, here is a sensor script that will listen for any 
touch packets from the NXP: 

// include sensor functions and types 
#include <Sensor.inc> 
public init() 
{ 
 // set the packet filter to send us touch 
events 
 sensor_set_config(SENSOR_PACKET, 
sensor_config_packet_filter, PACKET_TOUCH); 
} 
 
public on_sensor(time, sensor_name:sensor, value) 
{ 
 switch (sensor) 
 { 
  case SENSOR_PACKET: 
  { 
   new buffer[32]; 
          sensor_read_data(SENSOR_PACKET, 
buffer); 



 

          printf("== SENSOR_PACKET: 
length:%d, data:%s ==\n", value, buffer); 
  } 
  default: 
   printf(“Unhandled sensor event: 
%d\n”, sensor); 
 } 
 return true; 
} 

In this example, we note the following: 

In the init function, we tell the firmware what packets we 
would like to receive using the sensor_set_config function. 
The SENSOR_PACKET is a sensor_name: defined in 
pleo/sensors.inc. The sensor_config_packet_filter is a 
sensor_config:, also defined in pleo/sensors.inc. And the 
PACKET_TOUCH is a packet_type: defined in 
pleo/sensors.inc. 

1. In the on_sensor function, which is called every time a 
sensor is triggered, we handle the SENSOR_PACKET 
trigger. This trigger is set whenever a packet that we 
have registered for (or set the filter for) is received by the 
underlying firmware. The value passed is the length of 
the packet received. 

2. Within the SENSOR_PACKET handler, we use the 
sensor_get_data function to retrieve the actual packet 
data. From this point on we can examine the data to 
extract the information we care about. Note in this case 
we simply print the result to the monitor. 

Notes: 

o You must be careful about how you extract the data 
in Pawn. Remember that the [] operator is cell-based. 
If the data is packed in the resultant buffer, you must 
use the {} operator. 

o Currently, all data returned is unpacked, meaning we 
are wasting some memory, and that you must ensure 
that your buffer is declared large enough to hold your 
largest expected packet.  



 

Appendices 

 File Formats 

There are a number of formats used throughout the Pleo software system 
This Appendix will detail these in order to allow third-party developers to 
write their own tools that can generate resource data usable by Pleo. 

The types include: 

• Sound Files, USF 
• Motion Files, both CSV and UMF 
• Command Files, both CSV and UCF 
• Script, .AMX 
• Ugobe Project Files (UPF) 
• Ugobe Resource Files (URF) 

Sound Files 

USF is the native sound file format for Pleo sounds. The USF file 
starts with a header with the following structure: 

#define SOUND_FILE_ID "UGSF" 
#define SOUND_FILE_EXT "usf" 
 
struct SOUD_FILE_HEADER 
{ 
 // = "UGSF" = UGobe Sound File 
 int8 usf_id[4]; 
 // = 0 (old format), = 1 if we include the sf_name 
(current) 
 uint8 sf_ver; 
 // original file name, minus the extension 
 int8 sf_name[32]; 
 // specify things about data that follows 
 SFINFO info; 
 // normally 8 
 uint8 bits_per_sample; 
 // normally 1 
 uint8 num_channels; 
 // normally 11000 
 uint16 samples_per_second; 
 // number of times to loop this sound clip; 0 = 
forever 
 uint16 loop_count; 
 // 0xFFFFFFFF = just read to end of file... 
 uint32 num_samples; 
}; 

where SFINFO is: 

struct SFINFO 
{ 



 

    // 0 = uncompressed PCM; 1 = ADPCM 
    uint8 comp_type : 4; 
    uint8 dont_pitch_shift : 1; 
    uint8 reserved : 3; 
}; 

The header is followed by the raw PCM data or the ADPCM data, 
depending on comp_type flag setting in the SFINFO byte. 

Note the ADPCM does not follow the IMA specification. It uses the 
same delta tables, but we store only the top 8 bits of audio data, 
since the current sound output can only go up to 10-bits of 
resolution.  

Motion Files 

Motion files contain instructions on how to move each joint over 
time. They are sometimes also called animation files. Binary UMF 
files are generated from text-based CSV files, typically exported 
from 3ds Max. 

#define UMF_JOINTS 15 
 
#define JID_RE 0x4552 /* "Right Elbow" */ 
#define JID_LE 0x454C /* "Left Elbow" */ 
#define JID_RS 0x5352 /* "Right Shoulder" */ 
#define JID_LS 0x534C /* "Left Shoulder" */ 
#define JID_RK 0x4b52 /* "Right Knee" */ 
#define JID_LK 0x4b4c /* "Left Knee" */ 
#define JID_RH 0x4852 /* "Right Hip" */ 
#define JID_LH 0x484c /* "Left Hip" */ 
#define JID_TS 0x5354 /* "Torso" */ 
#define JID_HT 0x5448 /* "Horizontal Tail" */ 
#define JID_VT 0x5456 /* "Vertical Tail" */ 
#define JID_HN 0x4e48 /* "Horizontal Neck" */ 
#define JID_VN 0x4e56 /* "Vertical Neck" */ 
#define JID_EY 0x5945 /* "Eyes" */ 
#define JID_JW 0x574a /* "Jaw" */ 
#define JID_SD 0x4453 /* "Sound Channel" */ 
#define JID_TR 0x5254 /* "Transition Data" */ 
#define JID_FS 0x5346 /* "Foot switch data" */ 
#define JID_HD 0x4448 /* "Head data" */ 
 
#define UMF3_ID "UGMF" 
#define UMF3_VER 3 
#define SIZE_UMF3_NAME 32 
 
struct UMF3_HEADER { 
    /* UGMF*/ 
    uint8 umf_id[4]; 
    /* 3 */ 
    uint8 umf_version; 
    /* original base name of this file. Sans 
extension*/ 



 

    uint8 umf_name[SIZE_UMF3_NAME]; 
    /* number of joints in the data */ 
    uint8 num_joints; 
    /* 1 = degrees; other values are deprecated */ 
    uint8 angle_range; 
    /* units of time in milliseconds */ 
    uint8 timebase_ms; 
    /* number of MotionVectors in this motion file */ 
    uint32 num_vectors; 
    /* end time for this animation, in units of 
timebase_ms */ 
    uint16  end_time; 
    // NOTE: we store exactly num_joints uint16s for 
following table in the file; it is larger than that 
below to simplify runtime memory management 
    /* list of jids, in order to match data */ 
    uint16 joints[UMF_JOINTS+4]; 
}; 

After the header we have a list of motion vectors sorted in time 
order. 

#define UMF3_GOOD 0xF00D 
#define UMF3_DONE 0xDEAD 
 
// run time motion tags: 
#define UMF3_RUN  0xEA75  // this has been sent to 
motor control 
#define UMF3_END  0x0000  // this is done executing 
 
struct  UMF3_MOTION_VECTOR 
{ 
    /* set to 0xF00D to mark the start; 0xDEAD to 
mark end of file, just for safety. */ 
    uint16 motion_tag; 
    uint16 joint_ids; 
    uint16 start_time; 
    uint16 goal_time; 
    sint16 velocity; 
    sint16 position; 
}; 

Command Files 

Command files describe when a motion or sound can play, based 
on associated properties. Command Files can be of Sound or 
Motion type. The file formats are identical – the oly difference is 
that Motin Command files contain a property_motion key, whereas 
Sound Commands contain a property_sound key. 

#define UCF_ID "UGCF" 
#define UCF_VER 4 
#define SIZE_COMMAND_NAME 32 
 
struct UCF_HEADER { 



 

    sint8 signature[4]; 
    sint16 version; 
    sint8 cmd_name[SIZE_COMMAND_NAME]; 
    sint16 property_count; 
    sint16 entry_count; 
}; 
 

Following the header, there are property_count * entry_count 
tuples, each of which contains a property id, property type, and 
value. 

struct TAG_ENTRY { 
    uint16 id; 
    uint16 type; 
    uint16 value 
}; 

The property type is one of these: 

enum TAG_TYPE { 
    PROP_TYPE_NONE    = 0,  // invalid 
    PROP_TYPE_VALUE = 1, //matches exactly 
    PROP_TYPE_MIN   = 2, //must be over 
    PROP_TYPE_MAX   = 3, //must be under  
}; 

Resource Files 

A Ugobe Resource File (URF) is a collection of sound files, motion 
files, command files, script files and the user properties defined in 
a project. Combining resources makes copying and transportation 
of Pleo ‘applications’ much easier. 

The general layout of a URF looks like this: 

o Header 
o Resource 1 
o Resource 2 
o Resource 3 
o … 
o Resource N 
o Sound Index 
o Motion Index 
o Command Index 
o Script Index 
o Property Index 

The URF file starts with a simple header, which contains a 
signature, the file format version, the build version and a list of 



 

offsets to the various Indices (also referred to as Table Of 
Contents, or TOC). 

Byte offset  Data  Description 

0  ‘UGRF’  Resource file tag or signature 

4  VVvv  File format version. VV is the major version and vv is the 
minor version. 

8  tttt  Time and date this URF was built. Uses the Python 
time.time function. 

12  xxxx  Subversion revision ID, or the value given in the 
<options/version /> element in the project file. 

16  ‘UGSF’  Signature of Sound Index 

20  xxxx  Offset to start of Sound Index within this URF. Relative 
to start of file. 

24  ‘UGMF’  Signature of Motion Index 

28  xxxx  Offset to start of Motion Index within this URF. Relative 
to start of file. 

32  ‘UGCF’  Signature of Command Index 

36  xxxx  Offset to start of Command Index within this URF. 
Relative to start of file. 

40  ‘ AMX’  Signature of Script Index 

44  xxxx  Offset to start of Script Index within this URF. Relative to 
start of file. 

48  ‘PROP’  Signature of Property Index 

52  xxxx  Offset to start of Property Index within this URF. 
Relative to start of file. 

56  ‘SIZE’  Signature of Size field 

60  xxxx  Size of this file, minus trailing Adler32 tag and value 

 
The order of the various index offsets can, in theory, vary; that is, 
they may come in any order. In is recommended, however, that 
they be in this order. 

 



 

Following the header are all the resources for this application, 
possibly aligned on some block size, in order to speed lookup and 
loading. 

After all the resources are the Indices for each resource type. Each 
index starts with the same signature as that in the header, and a 
length field that is the size, in bytes, of this particular index. 

 

Byte offset  Data  Description 

0  ‘UGSF’  Resource file tag or signature 

4  xxxx  Size of this index/TOC, in bytes. 

 
This is followed by a list of entries, one for each resource in the 
body of the URF. It is arranged like so: 

Byte offset  Data  Description 

0  xxxx  Beginning offset for this resource, in bytes, from the 
beginning of the URF file 

4  xxxx  Length or size of this resource, in bytes. 

8  ssss  Name of this resource. This field is always 32 characters 
in length. It may or may not be null‐terminated. 

 
After the Indices, there is one more tag and value for the calculated 
Adler32 values for this file. The Adler32 is used to verify that the 
URF is intact and has not been corrupted. The Adler32 value does 
NOT include the ADLR tag or value itself. 

Byte offset  Data  Description 

0  ‘ADLR’  Signature for the Adler32 value 

4  xxxx  Adler32 checksum value for the whole URF, minus this 
value and the signature 

 
 



 

Document Revision History 

Revision Date Comment 

0.1  Initial version 

0.2  Add note about .exe tools change 

0.3  Formatting updates. Add note about OSX 
build tools. 

0.4 May 07, 2008 Add prerequisites section 

0.5 May 30, 2008 Formatting updates 

0.6 June 5, 2008 Some clarifications and simplifications 

0.7 June 11, 2008 Formatting updates, template changes 

0.8 July 09, 2008 Added Property and Drive chapters 

0.9 July 29, 2008 Added Sensors and Sound chapters 

1.0 July 30, 2008 Added Build Tools section. Added URF file 
description. 

2.0 August 15, 2008 Formatting updates, template revisions 

 
 

 


